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1 Executive summary
1.1 Introduction

City-type buses are used to connect airports with cities and also to provide intra-airport landside
transport (terminal-terminal, parking-terminal). In order to reduce emissions of pollutants and
greenhouse gases, reduce noise emissions, and increase customer satisfaction, the existing
conventional airport-city and intra-airport buses should be replaced by electrical ones, where an
ultimate solution is fully electric bus (e-bus). Moreover, electric power engaged for intermittent
charging of e-buses can be utilized to establish an airport e-hub to provide charging services for
customer (passenger) vehicles at the airport parking lots.

To mitigate the disadvantages of e-buses in terms of limited range, high cost, need for charging
infrastructure, and relatively long charging time, and speed up the electrification process, there is a
need for software solutions (applications) for electrification planning. Such a software solution has
been developed by the FME team through the Interreg CE project SOLEZ and demonstrated on the
pilots of cities of Dubrovnik and Zilina [1]. It is based on virtual simulation of an e-bus fleet over actual
(recorded) driving cycles and setting optimal e-bus and charging infrastructure configurations to
minimize the total cost of ownership calculated by the techno-economic analysis module.

The SOLEZ software solution has been significantly modified and extended through this deliverable
in terms of computationally more efficient e-bus fleet simulations, automated and more accurate
charging configuration optimization, predictive and optimal charging management, and optimization
of e-bus scheduling for lower investment cost, having in mind application to the city-airport and intra-
airport bus transport systems and the airport e-hub. The extended software solution will be applied
in the remaining course of the project for optimal planning of the airport bus system electrification at
Paris-Charles de Gaulle airport and Zagreb airport and the e-hub system at the Zagreb airport (to be
delivered in D2.2 by M54).

1.2 Brief description of the work performed and results achieved

The work performed and the results achieved are outlined below in relation to the four components
of the work.

1) A trip-based data-driven e-bus model has been built up to substantially speed up the e-bus
fleet virtual simulation and, thus, the whole software solution, while requiring only trip-based
driving cycle features that are usually available to transport operators through bus tracking
system or planning tools.
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2) A multi-objective genetic algorithm (GA)-based charging configuration optimization solution
has been developed to automate optimization of charging stations and chargers’ deployment
and minimize the investment cost and the fleet service delay. The optimization results in a
Pareto frontier of optimal solutions reflecting the minimization of the conflicting objectives
including the number of charging stations, the total number of chargers, and the service delay,
from which the operator can select a most favourable solution for the given transport system.

3) Model predictive control strategy for optimal online charging management of a fleet of
vehicles aggregated through a transport operator or an e-hub provider has been designed. The
strategy minimizes the cost of charging electricity based on prediction of transport demand,
electricity cost, and production from local renewable energy sources, thus providing a more
accurate electrification planning outcomes and more competitive and cleaner charging
services.

4) E-bus scheduling optimization has been developed based on a mixed integer linear
programming (MILP) formulation and two complementary solvers (MILP and GA). This solution
allows for scheduling optimization targeted at e-buses to minimize the number of busses,
where the buses can change the lines dynamically for the best utilization of their remaining
range and charging opportunities. The optimization results in a Pareto frontier in two
conflicting objectives including the total number of buses and a deadhead distance (the
distance travelled while changing the lines), from which the operator can pick a most beneficial
solution for the given transport system.

2 Structure of software solution
2.1 Target application

The airport-to-city (and intra-airport) e-bus transport system should be electrified for clear
environmental and social benefits (Section 1). Due to the availability of high-power electricity
installation including an excellent potential for deploying renewable energy sources (RES;
photovoltaic panels, in particular), the airport would be a natural candidate for installing an e-bus fast-
charging station. Since the e-bus dwelling/charging time at the airport would be relatively small, the
engaged power remains for the most of time at disposal for supplying other airport landside vehicles
and particularly customer electric vehicles (passenger, taxi, rent-a-car, and sharing vehicles) being
parked at the airport parking lots (Fig. 1). By designing such an e-hub, the airport can provide better
utilization of the local grid and RES, and at the same time offer charging services for better customer
satisfaction, environment protection, e-mobility proliferation, and increased income/profit.
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Fig. 1 lllustration of airport-city bus transport electrification and e-hub establishment planning framework

The overall e-bus transport and e-hub system becomes quite complex and requires proper software
solution for optimized planning to minimize the investment (e.g., e-buses, charging stations) and
operational costs (e.g., electric energy). Typical questions which such an electrification planning study
should generally address include:

(i)  what type of e-bus (HEV, PHEV, BEV) and with what size of battery are recommended (the
emphasis is on BEV, i.e. fully electric vehicle);

(ii)  what type of chargers and with what rated power are recommended (e.g., slow/night charging
only, fast charging from grid, fast charging from a stationary battery);

(iii)  where should the chargers be located (city or airport) and how the airport building power grid
(including RES, stationary battery and similar) should be configured for minimum cost and CO2
emissions;

(iv)  how should the e-hub system be configured in support of charging other e-vehicles;

(v)  how should the e-bus fleet and e-hub scheduling and charging management system be
implemented; and
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(vi)  what would be proper ICT solutions in support of overall vehicle-grid integration including
interoperability?

As far as the bus transport electrification planning is concerned, the software solution/tool developed
by the FME team through the Interreg CE project SOLEZ [1] may be used to provide answers to the
above questions, based on a virtual simulation of the targeted electrified transport system using
recorded driving cycles and faithful physical e-bus models. However, to address the e-hub design
needs and provide automated charging configuration and bus scheduling optimization, the SOLEZ
tool should be significantly extended. The tool is described in Subsection 2.2, its limitations are
discussed in Subsections 2.3, and its modifications and extension made through this project are
outlined in Subsection 2.4.

2.2 Description of existing software solution developed through SOLEZ project

Fig. 2 illustrates the structure of the city bus transport planning software tool developed through
SOLEZ project [1]. The tool is driven by recorded driving cycle data, and as the main output it delivers
the Total Cost of Ownership (TCO) over the projected fleet operational period (e.g., 12 years). The
Data Post-Processing Module (DPPM) transforms the recorded driving data into individual driving
cycles, and it also calculates various statistical features characterizing the conventional city bus
transport behaviours. The Electric Bus Simulation Module (EBSM) provides computer simulations of
different types of city buses (CONV, HEV, PHEV, BEV) over the driving cycles extracted by the DPPM.
The module outputs include the individual bus energy consumption (fuel and/or electricity) and
various features of powertrain response (e.g., engine/e-motor operating points, gear ratio trajectories,
etc.). The Charging Optimization Module (COM) utilizes the outputs of DPPM and EBSM to virtually
simulate the overall city bus fleet over the recorded driving cycles and optimise the PHEV- and BEV-
type bus charging configuration and management. This module provides the number, location, and
type of chargers, the bus battery capacity, and the number of reserve buses in the BEV case, which
are required to fulfil the driving routes with sufficient battery charge. The COM also outputs the total
fuel and/or electricity consumption over the considered period of operation. The Techno-Economic
Analysis Module (TEAM) uses the output data from the COM module, as well as the data on bus
transport investment and exploitation/maintenance cost, in order to calculate the TCO.
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Fig. 2 Organizational structure of e-bus transport electrification tool developed through SOLEZ project

The simulation tool is written in Python object-oriented programming language, with computationally
demanded routines coded in C language. It is designed in a user-friendly way (based on a graphical
user interface (GUI) including windows, tabs, |/O data interfaces, etc.) and having in mind
transferability to other cities in a way that it uses a common/shared database. The database serves
as a main storage for recorded driving cycle data and plays the role of an intermediary between the
main tool modules. In addition, the simulation tool includes the Data Management Module (DMM),
which provides greater flexibility and adaptability to different cities’ transport system configurations.
DMM enables the user to define all static data (system parameters) required by the simulation tool,
e.g. those related to vehicle model parameters, end-station and depot locations, charging station
parameters and techno-economic data.

2.3 Limitations of existing software solution

The following restrictions of the SOLEZ solution have been identified from the perspective of more
effective and accurate application to a wide range of electrification studies including the one
considered in this project and outlined in Subsection 2.1:
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1) Physical models of e-buses are used in the EBSM, which is connected with the following
disadvantages: (i) physical models require high-resolution driving cycles (with a typical
sampling frequency of 1 Hz) that are not regularly available to e-bus operators and (ii) use of
such an approach ends up in a relatively long simulations which prevents the tool from
application to large-scale transport systems (hundreds or thousands of e-buses) and/or studies
based on automated optimization (where a great number of simulation is conducted).

2) Charging configuration determined by locations and number of chargers is determined
“manually” by the COM,, i.e. by nominating a certain number of configurations, repeating the
virtual simulation, and finding the one which gives the minimum TCO. Based on the knowledge
gained from the initial COM execution, a new set of configurations can be nominated, and the
process is repeated. The main disadvantage of this process includes the need for significant
involvement of expert knowledge and hours. Also, it generally gives suboptimal results due to
a limited configuration search.

3) The transport system virtual simulation is run by the COM for a fixed (predetermined) e-bus
schedules, typically corresponding to the conventional e-bus fleet schedules. The solution
obtained in that way is generally suboptimal, because the range and charging restrictions of e-
buses are missed to be overcome to some extent by re-scheduling the buses (e.g., a charged
bus can move to another line to take the service of buses being charged on that line, or an
empty bus can be reallocated to another line where there is a free charger).

4) The charging management algorithm implemented within the COM is based on a simple
heuristic, rule-based logic, which may result in distinctively sub-optimal solution for mid/large-
scale transport systems and can hardly be used when planning and managing the e-hub system.

2.4 New features of upgraded software solution

The limitations of the SOLEZ solution have been overcome by developing a set of new software
modules. They are outlined below in the same order as given for the corresponding limitations listed
in Subsection 2.3, and are elaborated in details in Sections 3-6:

1) Trip-based data-driven e-bus model (Section 3). The physical model is replaced by its data-
driven approximation, which calculates the e-bus energy consumption directly from the trip-
lumped features such as distance travelled, average velocity, average road slope etc. Provided
that the approximation errors are small, the advantage of using the trip-based data-driven
model is twofold: (i) the model executes swiftly, thus being suitable for large-scale and
optimization-based electrification studies and (ii) the model training requires usually available
trip-based features of the driving cycle. The e-bus powertrain model development includes the
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following characteristic phases: a) preparation of training and validation/testing datasets, b)
selection of relevant driving cycle features, c) model parameterization and validation, and d)
model assessment. The HVAC system model is developed separately, and the energy
consumptions predicted by the two models are summed up.

2) Charging configuration optimization (Section 4). A multi-objective genetic algorithm (GA) is
used to optimize the charging configuration given by the locations of charging stations and the
number of chargers per each charging station. The optimization is conducted for the e-bus
transport system represented by a computationally efficient trip-based model. The
optimization results in a Pareto frontier in the following three objectives: the number of
charging stations, the total number of chargers, and the total (cumulative) e-bus fleet delay
caused by charging restrictions. A special attention is given to designing an algorithm that finds
a set of configurations with the minimum number of charging stations, whose results are used
to reduce the search space of the GA. The designer picks a point from the Pareto frontier
which provides a good trade-off of investment cost (number of charging stations and chargers)
and operational delay cost, and at the same time provides a reserve (i.e., robustness) against
the transport system modelling errors.

3) E-bus scheduling optimization (Section 6). For the given transport system (defined by e-bus
type, lines, and timetables) and (pre-optimized) charging configuration, e-bus scheduling is
optimized in terms of which bus takes which service trip, including the possibility to move
buses between lines to fulfil the timetables and/or take the opportunity to recharge. The
optimization problem is defined as a MILP problem, considering various charging constraints
including the charge sustaining condition (all the buses should have the same initial and final
state of charge conditions and allowing for a wide system specification flexibility (e.g. in terms
of specifying individual charger maximum power, the number of chargers per stations, the bus
battery capacity etc.). The optimization problem is solved by a MILP algorithm and a GA, where
the former provides optimal solution but is impractical for large-scale systems due to
computational inefficiency, while the latter is computationally efficient but only nearly optimal.
The optimization results in a Pareto frontier in two objectives being minimized: the total
number of buses and the deadhead distance. The Pareto frontiers have been obtained for both
e-bus and conventional bus fleets, and they are comparatively analysed.

4) Model predictive charging management (Section 5). A model predictive control (MPC)
strategy, run over a receding horizon or a single-day shrinking horizon, is designed to handle
online charging management in an optimal and predictive manner. The optimality is formulated
in minimizing the total charging electricity cost, while the predictive feature relates to
anticipating varying electricity prices, RES production, and transport demand. In order to make
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the strategy feasible for large-scale systems, such as the e-hub one, it is formulated to have a
hierarchical structure, where (i) the upper layer optimizes the aggregate charging power based
on the transport system modelled by an aggregate battery, and (ii) the lower layer distributes
the aggregate charging power to individual vehicles based on their priorities in terms of actual
battery state of charge and charging station departure time. The upper-layer MPC strategy
relies on a dedicated dynamic programming (DP) solver to handle generally nonlinear and
discontinuous transport and energy system model and constraints. The efficiency of online
MPC strategy is demonstrated by comparing the charging management results with those
obtained by using globally optimal (full-horizon) DP optimization on the aggregate level.
The above software modules have been demonstrated on the case studies available through previous
projects of the FME team, because the anticipated OLGA pilot studies’ data have not been fully
acquired during the course of software solution development. The OLGA pilot studies are subject of
forthcoming work, and the results will be published in D2.2 by M54.

3 E-bus model
3.1 Introduction

E-bus model is a key element of the overall software solution (Section 2), as it provides virtual
simulation of e-bus fleet for realistic driving cycle. The e-bus fleet energy consumption gained
through the virtual simulation represents a crucial input to charging configuration and management
algorithms, as well as techno-economic analyses (Fig. 1).

The energy consumption predictions are usually based on elementary, physics-based, and data-driven
models. The elementary model includes a direct relation between the e-bus energy consumption and
a travel feature (typically the distance travelled). It tends to oversimplify real-world scenarios, thus
compromising the prediction accuracy. The physical models include first-principle equation describing
the vehicle powertrain and longitudinal dynamics behaviours. However, they require a number of
physical parameters and maps, as well as high-sampling-rate driving cycle data, which can be
challenging and costly to obtain in regular fleet operation applications. On the other hand, the data-
driven methods employ machine learning techniques, including neural networks and random forests,
and generally provide favourable accuracy. However, to accurately capture real-world patterns, they
require large input/output datasets that are not readily available, particularly for e-bus fleets.

To mitigate the limitations of the existing methods, this section presents a novel macroscopic data-
driven regression model for e-bus energy consumption prediction. A rich dataset for model
parameterization and validation is generated by using an experimentally validated physical e-bus
model. The data-driven model relies on trip-centric input data such as distance travelled, mean
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velocity, and road gradient, which are usually available from city bus transport planning or GPS
tracking datasets. Given its rapid execution speed, the model is well-suited for comprehensive large-
scale city-bus electrification planning studies. The model is presented for a fully-electric city bus of
12 m size. It can readily be extended to other bus types such as conventional, hybrid, and plug-in
hybrid buses and other bus sizes such as 18 m bus. A special attention is devoted to modelling of
heating, ventilation and air-conditioning (HVAC) system, since it represents the second largest energy
consumer (after the powertrain).

The remaining part of this section is organized as follows. Subsection 3.2 presents the experimentally
validated physical e-bus model, which is used in Subsection 3.3 as a basis for sensitivity analysis of e-
bus energy consumption and in Subsection 3.4 for data collection used in data driven e-bus modelling.
Feature selection in support of data-driven modelling is described in Subsection 3.5. Subsection 3.6
presents, validates, and assesses the final data-driven e-bus model consisting of separate powertrain
and HVAC system submodels. Subsection 3.7. gives concluding remarks.

Note: The work presented in this section has been disseminated through the following conference
papers (the first one on physical model, and the second one on data-driven model), which also include
a methodology state-of-the-art review and elaborates on the contributions of the approaches
proposed:

J. Deur, I. Cvok, I. Ratkovi¢, J. Topic, J. Soldo, F. Maleti¢, “Backward-looking Modelling of a Fully Electric
City Bus with Emphasis on Cabin Heating and Cooling Subsystem”, 18th Conference on Sustainable
Development of Energy, Water and Environment Systems (SDEWES), Dubrovnik, Croatia, 202 3.

Z. Dabcevi¢, B. Skugor, J. Deur, “A Trip-Based Data-Driven Model for Predicting Battery Energy
Consumption of Electric City Buses”, 18t Conference on Sustainable Development of Energy, Water and
Environment Systems (SDEWES), Dubrovnik, Croatia, 2023.

3.2 Physical e-bus model
3.2.1 Recorded driving cycle and energy consumption data

The driving cycle and energy consumption data have been recorded on a single, 12 m e-bus operating
on Route 15 in the city of Jerusalem [7]. The route is bidirectional and stretches between the end
stations Binyenei HaUma and Talpiot. The data were collected on August 13, 2020 (peak summer
season) in the period from 7 am to 9 pm. The recording was continuous with the sampling time of 1
second, and it concerned the following data: timestamp, geographical coordinates (longitude, latitude
and altitude), velocity, distance travelled, cumulative battery energy consumption and battery SoC.
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The considered dataset contains 14 trips in total (7 for each travel direction), where each individual
trip is defined as driving between the two end stations in either direction. The velocity profile along
the day is shown in Fig. 3a. The total distance travelled is approximately 122.5 km for the net
operating time of 11.5 h. The corresponding reconstructed ridership profile is shown in Fig. 3b. Finally,
the actual ambient temperature (T,) and solar irradiance (Q,,;) data profiles are shown in Fig. 3c.
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Fig. 3 Recorded city bus driving cycle time profile data: vehicle velocity and distance travelled (a), ridership
(b), and ambient temperature and solar irradiance (c)

Fig. 4a shows the scatter plots of recorded altitude data in relation to distance travelled for direction
Binyenei HaUma-Talpiot (further abbreviated as A-B) and multiple trips. The reconstructed road
slope profile is shown in Fig. 4b. The driving direction A-B is characterised by mostly downhill driving
with the road slope peaks up to 5 deg. In order to reduce noise in the reconstructed road slope profile,
before being differentiated the recorded altitude profiles were averaged and filtered by a low-pass
double-sided Butterworth filter of third order (see solid line in Fig. 4a). The results for the opposite
direction (B-A) are not shown for the sake of brevity.
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Fig. 5 shows the recorded battery SoC and cumulative energy consumption time profiles
corresponding to the driving cycle in Fig. 3a. These profiles are used as a reference for e-bus model
parameterization. By linearly extrapolating the energy consumption profile over the whole SoC range
[0,1] and subtracting the observed end values, one obtains the total battery capacity of 292.5 kWh,
which equals 91% of the declared, new bus battery capacity of 324 kWh. The difference between the
two battery capacity values can be attributed partly to nonlinear battery behaviour, and partly to
battery aging (the bus was produced in 2017).
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Fig. 4 Reconstructed road altitude (a) and Fig. 5 Time profiles of battery SoC and cumulative
road slope profiles (b) with respect to battery energy consumption

distance travelled
3.2.2 Powertrain model

The powertrain of the considered fully electric city bus is modelled in the backward-looking manner,
i.e. in the direction from the wheels towards the electric machine. The driving cycle-defined vehicle
velocity (vy), road slope (8) and ridership inputs (Subsection 3.2.1) are fed into the vehicle longitudinal
dynamics equations to calculate the total wheel torque and the wheel speed [2]:

Ty = MV, + 1, RoM,, g cos(8) + 1,M,g sin(8) + 0.5%,pai-Ar Cqvi, (3.1)
-
W,y = — (3.2)
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where 1, is the tire effective radius, M,, = M, + My, is the sum of the empty vehicle mass (M.o) and
the total passengers’ mass (M), Ry is the rolling resistance coefficient, p,;, is the air density, A¢ is
the bus frontal area, C,; is the aerodynamical drag coefficient and g is the gravity acceleration. The
individual passenger mass is estimated to 68.125 kg to make a full bus with the passengers’ capacity
of 80 match the declared maximum vehicle payload. Therefore, the passenger mass M, is calculated

as 68.125 - ny5, Where the ridership n, ., is given in Fig. 3b.

The e-machine torque () and the speed wy are calculated as:

Py(w
Tyme = iO ) .
Wy = lgW, (3.4)

where i, is the final drive ratio, while n..(t,,) and Py(w,,) are the drivetrain efficiency and the idle
power loss maps, respectively, with k: being defined as -1 for 7w > O (motoring) and 1 for 7w < O
(regenerative braking). These maps have been reconstructed by properly scaling the maps available
in literature with respect to maximum speed and power ratios of the particular e-bus and the
reference vehicle from literature (see [3] for more details).

The e-machine efficiency ny is modelled by a map dependent on the e-machine speed and torque
(see Fig. 6), from which the e-machine power load to the battery is calculated as:

Py = 771]\(40 (Tme ©Me) T Wi, (3.5)
where the exponent k depends on the e-machine operating mode: k = -1 for motoring (P > 0), and
k = 1 for regenerative braking (P, < 0). The map in Fig. 6 is adopted from the map published in [4]
for a similar M/G machine and scaled based on the Willans line method with respect to maximum
speed and power ratios of the particular and reference M/G machine.
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Fig. 6 Normalised efficiency map and maximum torque characteristics of e-machine

3.2.3 Battery model

The battery model is based on a single cell model scaled up to the appropriate number of serially
connected cells contained in the battery pack. The single cell equivalent circuit model (ECM) has been
developed based on the available data from the SAFT VL30PFe cell datasheet and reference [5]. The
battery ECM is shown in in Fig. 7a, and it consists of the open-circuit voltage source (U,.) and the
internal resistance (R;,,;). Both parameters are made dependent on the battery SoC, as shown in Fig.
7b. Temperature dependencies of both parameters are neglected, since it is assumed that the e-bus
includes an effective battery thermal management system.

The battery SoC dynamics are described by state equation:

Ipart _ \/Ugc(SOC) — 4R ;3 (S0C) Ppgre — Upc(S0C)
Qmax 2QmaxRint(S0C) '
where Ipatt is the battery current, Qmax is the battery charge capacity, SoC=Q / Qmax is the state of
charge, and Pyt is the total battery power including the e-machine power Puc given by Eq. (3.5), and

the powers of auxiliary devices (Paux) and HVAC system (PHVAC) determined by the models described
in the next two subsections:

SoC = —

(3.6)

Ppatt = Pue + Paux + Puvac- (3.7)

Note that the slowly changing SoC variable is the only state variable of the overall e-bus backward-
looking model (a quasi-static model). The battery charge capacity is obtained from the energy capacity
Emax = 292.5 kWh as Qmax = Emax / Uoc(SOC = 50%) =459 Ah.
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Fig. 7 Battery equivalent circuit (a) and SoC dependencies of open-circuit voltage and internal battery
resistance for considered LFP battery (b)

3.2.4 Model of auxiliary devices

The main auxiliary devices considered include servo steering, air compressor supplying brakes and air
suspension, and DC/DC converter supplying low voltage auxiliary devices (e.g. wiper, electronic
devices, light beams and similar). The power consumption of these devices is modelled based on their
nominal power and a power-modulating binary signal (see [1] and references therein). The nominal
power values, and the values of binary signal duty cycle and period are given in Table 1 for the three
auxiliary devices. Note that the DC/DC converter power load is set to be constant. The total auxiliary
device load P, is obtained by summing up the contributions of each device load (simulated according
to the parameters in Table 1) and fed to the total battery load expression (3.7).

Table 1 Values of nominal power (P, y), duty cycle (d.) and duty cycle period (t,) of modelled auxiliary

devices
Auxiliary device Pouxn [W] d.[] t, [s]
Servo steering 2500 0.09 400
Air compressor 2000 0.15 100
DC/DC converter with low voltage devices 184 1 N/A
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3.2.5 HVAC system model

The presented HVAC modelling method can be applied for both A/C and heat pump modes. Since
the considered driving cycle (Fig. 3) corresponds to a hot summer day, the model parameterization is
presented for the A/C mode. The main assumption is that the HVAC device response is much faster
than the cabin thermal transients, so that the overall system is represented by the bus cabin model
depicted in Fig. 8. A proportional-integral-derivative (PID) controller commands the cooling power
Qyvac to maintain the cabin temperature Teqb at it reference value Teanr. The cooling power Quyac is
limited in accordance with the datasheet of assumed HVAC device (Eberspicher AC136 AE HP HVAC
system, [6]). The reference variable T r is generated in dependence of the ambient temperature Tq
(see cyan line in Fig. 8), which is set to fall between the bounds defined by VDV 236:2015 guidelines
for public transport (red and green lines). Based on the assumption of fast HVAC system response
and the assumption of constant coefficient of performance (COP = 1.8), the HVAC power
consumption Puvac from Eq. (3.7) is determined as Qyy 4c/COP.
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Fig. 8 lllustration of HVAC system energy consumption model

The thermal dynamics model includes four thermal masses (Fig. 8): cabin air, interior body, and inner
and outer chassis shells; and different thermal loads: conduction, convection and radiation between
the thermal masses, solar irradiance, and passenger metabolic load. The model is implemented in
Dymola as illustrated in Fig. 9. The model inputs include the ambient temperature (T,), the solar
irradiance (Qs,;), the vehicle velocity (vv) and the ridership (Npass).
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Certain parameters of the cabin thermal model were difficult to determine or estimate due to either
lack of available data (e.g. bus body paint colour or glass tinting) or complex parameter dependencies
(e.g. heat exchange between interior elements). There were five such parameters: the heat transfer
coefficients combined with lumped interior elements surface for convective heat transfer between
interior and cabin air, and between interior chassis shell and cabin air, the conduction coefficient
between interior and exterior chassis shell, the glass transmissivity coefficient for interior solar
irradiance load, and the combined transmissivity and absorptivity factor for solar irradiance on the
body exterior surface.
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Fig. 9 E-bus cabin thermal model implemented in Dymola

The unknown cabin thermal model parameters have been determined through optimization by using
modeFrontier software. The optimization setup is illustrated by the block diagram shown in Fig. 10.
The overall model used in the optimization setup includes not only the Dymola thermal model but
also the powertrain Python model. This is to obtain simulation responses of the battery SoC and the
overall energy consumption Esim = [Peatedt, which are compared with the recorded SoC and energy
consumption responses to generate the corresponding RMS errors fed to the optimization genetic
algorithm MOGA-II to minimise those errors. The two-objective optimization has resulted in a Pareto
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frontier of optimal solutions. The selected solution corresponds to a low energy consumption RMS
error, and it results in a favourable overall fit accuracy (partly because of a better resolution of the
recorded energy consumption signal than the recorded SoC signal).

Set of optimal
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’ » bus eBus simulation
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Fig. 10 Block diagram of optimization setup used to determine unknown parameters of bus cabin thermal
model

The simulation profiles of e-bus model variables, obtained through the cabin thermal model parameter
optimization and shown in Fig. 11, have further been used to optimise parameters of a HVAC
regression model to be used within the e-bus backward-looking model. The regression model is linear
in parameters and its inputs correspond to the inputs of the cabin thermal model (T, Qs,;, Vv and npass).
Matlab function stepwiselm available within Statistics and Machine Learning Toolobox has been used
to select the model features and optimise its parameters. The selected model is given by:

. . 2
PHVAC = ﬁO + ,BlTa + .BZQSOZ + .BBnpass + ﬁ4vveh + .814Tavveh + .BZZQSOZ . (38)

Comparative responses of the actual and simulation responses of SoC, energy consumption and
HVAC power, shown in Fig. 11, indicate very good modelling accuracy on the dataset used in model
parameterisation (training).
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Fig. 11 Response of recorded e-bus model variables for dataset used in model training and corresponding
simulation responses of SoC, energy consumption and HVAC power
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3.2.6 E-bus model validation

For an unbiased assessment of modelling accuracy, the overall e-bus model has also been validated
against a couple of other datasets (corresponding to different days of operation of the same bus on
the same route during the same summer month). The results of the first validation, shown in Fig. 123,
confirm the very good modelling accuracy.
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Fig. 12 E-bus model validation for first (a) and second validation dataset (b), as well as for second
validation dataset but with simulated A/C system switched of from 7 am and to 10 am

However, the model performance degrades for the second validation (Fig. 12b) in terms of occurrence
of SoC and energy consumption offsets during a relatively long bus pause (dwell time) at the end
station after the second driving mission (i.e., after 8 am; see also the velocity profile in Fig. 11). It has
been hypothesised that, unlike in the previous two datasets, the HVAC system was shut down during
the morning hours since the ambient temperature was around the room temperature. Because the
model presumed that the HVAC was active during the whole operation period, its SoC and energy
consumption predictions persistently changed, thus accumulating the offset during the morning
pause. In order to check the above hypothesis, the HVAC submodel is shut down in the period from
7 am to 10 am. The corresponding results shown in Fig. 12c indicate that the modelling accuracy is
significantly improved when compared to the original response in Fig. 12b. A small offset is, though,
still present in the SoC and energy consumption results around 10 am.
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3.3 Physical model-based sensitivity analysis of e-bus energy consumption

Once the e-bus model is successfully validated, it can be used as a basis for energy consumption
sensitivity analysis for a wide range of scenarios and operating conditions. Only the SoC trajectory
results are presented below since the energy consumption responses directly correlate with the SoC
ones (see Fig. 12).

3.3.1 Sensitivity analysis with respect to A/C state and ridership

The sensitivity analysis of battery SoC trajectory is first conducted with respect to different A/C
states (on | off | full) and bus ridership (zero | medium (40) | full (80) | varying), in order to reveal the
impact of these operating parameters on the e-bus range. The results shown in Fig. 13 indicate that
the ambient conditions (i.e., A/C load) and ridership (i.e., the bus load) significantly affect the energy
consumption, as the final battery SoC can be anywhere between 20% and 70% after approximately
9.5 h of operation. Accordingly, the e-bus range reduces from the extrapolated maximum value of
255 km to 87.5 km, which is the reduction of around 65%. When expressed per kilometre of ride, the
energy consumption reduces from 2.41 kWh/km to 0.87 kWh/km (Table 2).
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Fig. 13 SoC trajectories obtained for different levels of A/C and ridership load
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Table 2 Specific energy consumptions for different levels of A/C and ridership load

Passengers load
A/C state Zero Medium Full Varying
On 0.87 kWh/km 1.24 kWh/km 1.59 kWh/km 1.06 kWh/km
Off 1.31 kWh/km 1.77 kWh/km 2.24 kWh/km 1.56 kWh/km
Full* 1.74 kWh/km 2.09 kWh/km 2.41 kWh/km 1.95 kWh/km

3.3.2 Sensitivity analysis with respect to period of daily operation

In order to gain insight into daily variation of the e-bus specific energy consumption, the simulation
has been conducted over each individual trip along the day and separately for each driving direction.
The model is reset to its nominal setting corresponding to actual (varying) A/C and ridership loads (as
in Fig. 11). The obtained simulation and related recorded values of specific energy consumptions are
shown in Fig. 14 for individual and combined driving directions. The same figure shows the
corresponding average vehicle velocity data. The summarised results are plotted in Fig. 15. The results

correspond only to actual driving missions, i.e. the dwelling periods at the end stations (and resulted
A/C load) are disregarded.
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Fig. 14 Specific energy consumption values calculated per trip (and per direction) based on simulation
results (a) and recorded data (b), and corresponding average values of recorded vehicle velocity (c)
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Fig. 15 Simulated vs. recorded values of specific energy consumption (a) and simulated specific energy
consumption vs. average vehicle velocity (b)

The specific energy consumption varies significantly due to the effect of road slope (the consumption
is lower for mostly downhill driving in Direction A, Fig. 14). The consumption variation is significant
even for combined (two-way) trips (light green bar in Fig. 14a), which is due to due to the varying
ambient, ridership and traffic conditions (cf. Fig. 3 and Fig. 14). The traffic condition influence is
substantiated by clear correlation between the specific energy consumption and the average vehicle
velocity, as shown in Fig. 14 and more clearly in Fig. 15b. The individual direction specific
consumptions vary in the range from around 0.9 to 2.4 kWh/km, while for the two-way trips they fall
in the range from 1.2 to 1.8 kWh/km. The good modelling accuracy is confirmed by fine agreement
between the simulation-obtained and recorded value plots in Figs. 14a and 14b. This is better
illustrated in Fig. 15a in terms of good alignment of simulation vs. recorded values with the ideal 1:1
line. Quantitatively, the plot in Fig. 15a is represented by the Pearson's correlation coefficient of 0.95
and the coefficient of determination is RZ = 0.85, which are quite close to the ideal value of 1.

3.4 Data collection for data-driven e-bus modelling

3.4.1 Data collection framework

In the absence of a wide set of recorded e-bus energy consumption data, the framework depicted in
Fig. 16 has been employed to generate the data needed for data-driven modelling. Initially, high-
sampling-rate (1 Hz) data were acquired for a 12m electric city e-bus operating across a day on several
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routes in the City of Jerusalem. The acquired data were employed for parametrization and validation
of a physical e-bus model running on the same 1 Hz sampling rate (Subsections 3.2 and 3.3).

At the same time, low-sampling-rate (approx. around 0.25 Hz) data were collected from a fleet of
around 300 conventional buses operating on 29 routes in Jerusalem over the period of one month.
The recorded low-sampling-rate data were then transformed into the corresponding set of
representative high-sampling-rate driving cycles corresponding to trips between two end stations.
Those driving cycles were then fed to the developed physical e-bus model to obtain the energy
consumption data. The transformation was based on the Markov chain synthesis method proposed
in [7].

Finally, a wide set of trip-based statistical features (e.g., mean velocity, number of bus station stops,
average ridership, trip duration, initial SoC, etc.) have been extracted from the synthetic driving cycles.
They are paired with the physical model-based simulation data on energy consumption to form a
dataset employed for the development of data-driven model in Subsections 3.5 and 3.6.
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Fig. 16 lllustration of data collection framework
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3.4.2 Generation of extrapolation datasets

In total, 4057 synthetic driving cycles were generated based on the Markov chain approach [7]. Each
cycle was unique not only with respect to route (considering diverse road and traffic conditions,
including varying road grades), but also with respect to time of trip (considering fluctuating traffic and
ridership conditions). Additionally, each driving cycle had a distinct initial battery state of charge (SoC).

To rigorously assess the extrapolation ability of the data-driven model (i.e., its generalization
properties), four additional sets of driving cycles were derived from the basic set of synthetic driving
cycles (Set #1):

e Set #2: Faster and shorter trips: For each trip, the mean velocity of every bus station-to-station
segment is amplified by 50%, and the travelled distances are randomly reduced.

e Set #3: Flat roads: the road slope is set to zero.

e Set #4: Steeper roads scenario: the road grade profile is scaled up by 50%.

e Set #5: Faster trips: The mean velocity of each station-to-station segment is amplified by 50%.

Fig. 17 shows histograms of the main driving cycles features for all the five individual datasets and a
data set composed of the individual ones (an aggregate dataset). The corresponding histogram of
powertrain energy consumption per trip is given, as well. When compared to the basic dataset #1,
the modified datasets extend the range of features, thus making the aggregate dataset wider and
flatter.
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Fig. 17 Distributions of main features of standard, modified, and aggregate driving cycle sets and
corresponding distribution of powertrain energy consumption
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3.5 Feature selection for data-driven e-bus powertrain modelling

Feature selection is an integral component of machine learning and data analytics. It is aimed at
enhancing the model accuracy and simplicity by identifying and retaining only the most relevant
features. The presented feature selection method corresponds to e-bus powertrain (and auxiliary
devices) modelling only, because HVAC modelling represents an independent and straightforward
trip-based modification of the approach presented in Subsections 3.2 and 3.3 (see Subsection 3.6).

3.5.1 Performance metrics and validation strategy

Two metrics are employed to energy consumption model residuals to evaluate the modelling accuracy
[8]: (i) root mean square error (RMSE) and (ii) coefficient of determination (R?). To reduce the number
of model inputs, the powertrain energy consumption is normalized with respect to travelled distance.
The output predicted by such a normalized model (i.e., specific energy consumption in kWh/km) is in
the final stage multiplied by the travelled distance to calculate the absolute energy consumption in
kWh. The model performance metrics R? and RMSE metrics are computed with respect to final model
output, i.e. the absolute energy consumption.

In the model evaluation, a five-fold cross-validation method has been applied to the basic dataset (Set
#1, Subsection 3.4), as depicted in Fig. 18. The basic dataset is randomly partitioned into five sections,
termed folds. In each iteration of this method, a single fold was designated for model validation, with
the remaining four folds serving for training. This process yields individual scores RZ.; and RZy;;, i =

1,...,5, for training and validation in each iteration, from which lumped/average scores RZ. and RZ,
are derived (Fig. 18).

In the sixth iteration, the model is trained on the whole (unpartitioned) basic dataset. The obtained
model is then applied to the extrapolation datasets (Sets #2-#5), thus resulting in the validation scores
Rij,j = 2,..,5 (Fig. 18). Finally, the combined validation score R}, is obtained from the residuals
calculated by merging the predicted outputs from the validation iterations (9,4, ; for i = 1,...5) with
the predicted values for the extrapolation sets (375,]- for j = 2,...5), and subtracting them with their
true-value counterparts. The described validation process (Fig. 18) is applied when evaluating both
R? and RMSE metrics.
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Fig. 18 Schematic representation of model validation strategy
3.5.2 Quadratic regression model
Feature selection have been applied by using the following linear-in-parameter quadratic model:

9 = Bo + PiX1 + BoXo + BaXs + PaXy + BsXT + BsX5 + BrX5 + BoXZ + PoX1Xo + ProX1 X3
+ ,811X1X4 + ﬂ12X2X3 + ﬁ13X2X4- + ﬁ14X3X41
where § is the dependent variable (here specific powertrain consumption), X;,X,, ..., X, are the

predictor variables (with n = 4 in the example of Eq. (3.9)), B, is the is the y-intercept parameter, and

B, B2 o) Py m = 2n + n(nz_l), are the model parameters corresponding to individual features.

(3.9)

The considered predictor variables include (see the dark blue block in Fig. 16): total number of route
stations Ngq¢ions, NUMber of stations that the bus actually stopped at, Ny, ratio of stopping to total

Nstops

stations pgiops = , mean velocity u,, average ridership 7,45 and standard deviation of ridership

Nstations

Opass» trip duration t..;;,, trip distance dy.;, initial state of charge SoC;,;;, mean road grade u,,4, and
standard deviation of road grades o,,. With this set of n = 11 predictor variables, the number of

guadratic model features equals m = 77.
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3.5.3 Feature selection

LASSO (Least Absolute Shrinkage and Selection Operator) technique [9] applies a penalty to the
absolute values of regression parameters 3;, i = 1, ..., m, thus encouraging parameters corresponding
to non-influential features to diminish (see Fig. 19). This shrinkage mechanism is controlled by the
penalty coefficient lambda A. As A grows, more model parameters converge to zero.
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Fig. 19 lllustration of LASSO feature selection technique in particular case of n = 11 predictor variables
and m = 77 features of energy consumption quadratic regression model

Random forest importance approach assigns importance scores to features based on their frequency
in splitting data, indicating their contribution to the prediction accuracy. This relative feature
importance is illustrated in Fig. 20.
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Fig. 20 Feature importance distribution as determined by Random forest importance analysis

The quadratic regression model has been re-trained by sequentially adding individual features based
on their significance ranking provided by LASSO and Random forest importance approaches. The
results are shown in Fig. 21 based on the R?2,,,, validation metrics introduced in Subsection 3.5.1.
They indicate that the LASSO approach achieves peak performance with a smaller number of features
compared to Random forest importance method.
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Fig. 21 Comparative plots of aggregate R? values for LASSO and random forest importance feature
selection methods

Wrapper methods are used in model optimization for systematic feature selection. These methods
select the best feature subsets by building and evaluating models [9]. Forward feature selection,
Backward feature elimination, and Stepwise regression are characteristic methods from this
category. Each method identifies an optimal set of regression model features based on the Bayesian
Information Criterion (BIC):

BIC = k In(a?) + (m + Din (k), (3.10)

where m + 1 represents the number of model parameters (including intercept), k signifies the number
of observations (sample size), and o2 represents the average of the squared differences between the
observed values and the values predicted by the model, quantifying the model prediction error. A
lower BIC index suggests a better model fit.

To determine the optimal set of features, with a focus on both performance and number of terms,
specific thresholds for each method were fine-tuned. Forward Feature Selection begins with no
features, and continues with progressively adding them based on model fit improvement until the BIC
value increase surpasses a threshold of 100. Backward Feature Elimination begins with all features
and removes them to improve the model, while stopping when the BIC falls below the threshold of
150. Stepwise Regression combines both methods, adjusting features based on fit with the threshold
of 450 and the removal threshold of 400.

Best subset method searches through all combinations of features to identify the optimal model
subset. Due to the high computational demand, the number of predictor variables is reduced ton = 4
variables highlighted by feature selection results in Figs. 19 and 20: mean road grade, standard
deviation of road grade, average number of passengers, and mean velocity. This leads to the quadratic
regression model given by Eq. (3.9) and having m = 14 features. Consequently, 16,383 distinct linear
regression models can be produced. The performance of each model is depicted in Fig. 22 by a point,
which gives the values of validation metrics R%),,; and RMSE, .4, defined in Subsection 3.5.1.
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Fig. 22 Best subset method validation results
3.5.4 Comparative analysis of model gained by various feature selection methods

Different feature selection methods presented in Subsection 3.5.3 yield multiple candidate feature
sets, which are summarized in Table 3. Four candidate sets, including from 3 to 6 features, are
identified by the Best Subset method as a good trade-off of modelling accuracy and simplicity (see
Fig. 22a). Although the LASSO metrics peak is at 6 features, and Random Forest at 15, simpler sets
close to these peaks are preferred, influenced by the Best Subset approach emphasis on fewer
features. So, LASSO models with 4 and 5 features are selected in Table 3, while Random Forest
highlights a 9-feature model (see marked sets in Fig. 21). The wrapper methods are represented by a
single optimal configuration each.

Out of the total of 10 configurations listed in Table 3, the four-feature one given by the best subset
method (denoted in bold in Table 3 and marked in Fig. 22) has been selected for further analysis in
Subsection 3.6. This is because its score R%,,,; = 0.9755 nearly matches the top score R, = 0.9763
of the best-subset model with six features. Moreover, minimal variance in R? (and RMSE) among
different data sets points to a consistent performance of the selected model, alongside with a good
interpretability (e.g., there is only a single interaction term - the one between mean velocity and
average ridership).

Confidential: This document is property of the OLGA Consortium and shall not be distributed or reproduced
without the formal approval of the Consortium

39/118



OLGA_D2.1_SoftwareSolution_ebusTransportElectrification_TransportSystemOptimization_v1.docx '

Table 3 Comparative performance metrics of optimal models obtained by various feature selection

methods
Nu?fber Selected features R%r R'Z’“’ R§'2 R§'3 RE"‘ RE'S R?"‘“’
features RMSE,, | RMSE,, RMSES‘Z RMSE5,3 RMSESA RMSEsjs RMSE,ota1
LASSO
4 o e T 0.9777 | 0.9776 | 0.9650 | 0.9829 | 0.9575 | 09592 | 0.9738
rg» 9rg> Hv * Hrg: Ky Tpass 0.8873 | 0.8862 | 0.8720 | 05911 | 1.5901 | 1.2487 | 1.0126
s o2 v = e 0.9776 | 0.9776 | 0.9656 | 0.9816 | 0.9568 | 0.9601 | 0.9737
Hrg: Irg: to Hrg) Hv Tpass Tpass Hrg 0.8883 | 0.8881 | 0.8649 | 0.6124 | 1.6032 | 1.2350 | 1.0153
Random Forest importance

9 lrgs K29, Org* trgs Notations *Hrgs Ho*lrgs | 0.9752 | 0.9750 | 0.9645 | 0.9312 | 09374 | 09576 | 0.9621
1" Aerip Notops ™t Tipass Hrgs fy*Org 0.9346 | 0.9381 | 0.8783 | 1.1850 | 1.9290 | 1.2731 | 1.1896

Forward selection
8 Lrgs to Tipass: 029 Hegs Hy*thrg) 0.9787 | 0.9785 | 0.9636 | 0.8790 | 0.9625 | 0.9556 | 0.9638
Ppass Hrgs Org» Lerip Hrg 0.8673 | 0.8682 | 0.8895 | 1.5719 | 1.4927 | 1.3017 | 1.1652

Backward Elimination
10 Hrg B2ty Tlpasss ty*Orgs ty Hrgs ipass™Hrgs | 0.9781 | 0.9780 | 0.9656 | 0.9464 | 0.9617 | 0.9571 | 0.9710
Ppass“SOCinits Opass Org» s g 0.8787 | 0.8788 | 0.8640 | 1.0462 | 1.5088 | 1.2799 | 1.0761

Stepwise Regression
P T 0.9783 | 0.9782 | 0.9647 | 0.9840 | 0.9660 | 0.9569 | 0.9760
Hrg> Ho Tpass: Irg> Hrg> Ky Hrg: Tpass Hrg | 755 | 08750 | 0.8757 | 0.5719 | 1.4222 | 1.2825 | 0.9839

Best Subset

3 o2 0.9778 | 0.9777 | 09662 | 0.9828 | 0.9574 | 0.9591 | 0.9739
lrgs 025, oy Tipass 0.8860 | 0.8849 | 0.8567 | 0.5923 | 1.5919 | 1.2504 | 1.0104
4 2 2 e 0.9784 | 0.9784 | 0.9639 | 0.9825 | 0.9666 | 0.9546 | 0.9755
Hrg Hrg> Trg: Mo Tpass 0.8727 | 0.8721 | 0.8855 | 0.5978 | 1.4091 | 1.3161 | 0.9922
s S R 0.9786 | 0.9785 | 0.9642 | 0.9821 | 0.9681 | 0.9547 | 0.9759
Hrg: trg> Hrg Org: Org My Tpass 0.8694 | 0.8690 | 0.8817 | 0.6047 | 1.3774 | 1.3153 | 0.9862
. - 2 e g2 2 0.9781 | 0.9781 | 0.9666 | 0.9823 | 0.9662 | 0.9582 | 0.9763
Hrg: Mpass: Hrgs Hrg Hv: Irgy o 0.8782 | 0.8782 | 0.8521 | 0.6010 | 1.4178 | 1.2630 | 0.9817

Note: All RMSE values are given in kWh.
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3.6 Trip-based data-driven e-bus model

In Subsection 3.5, powertrain model features were selected (see Table 3), and the model was trained
and validated on the basic dataset and then tested on four separate (extrapolation) datasets. Herein,
a combined/aggregate dataset (see Fig. 17) is used for both training and validation (the
training/validation folds in Fig. 18 are taken from the aggregate dataset). This approach aims to
improve the modelling accuracy and allows for a direct performance comparison between the linear
regression model and more complex machine learning algorithms, which often perform well at
interpolation but face challenges with extrapolation. The training and validation metrics
(RZ., R%,, RMSE,., RMSE,,;) are obtained by using 5-fold cross-validation, as illustrated in Fig. 18.

3.6.1 Powertrain model

Training of the quadratic regression model, selected in Subsection 3.5 (see bold row of Table 3) and
given by:

Eyt

d.. =Po+ 5 Urg + B .urgg + B3 0'1?‘9 + B4 Uolpass) (3.11)
trip

on the aggregate dataset yields the performance metrics listed in the first row of Table 4. These
metrics are nearly identical to the one listed in Table 3, thus highlighting the model robustness and
generalizability.

To potentially improve the modelling accuracy, alternative machine learning algorithms were
evaluated on the aggregate dataset and compared with the quadratic regression model (3.11). Most
of these algorithms are set to use the individual predictor variables rather than quadratic and
interaction terms/features present in the model (3.11) (see second column of Table 4). This is because
these advanced algorithms should automatically detect/realize inherent interactions between
individual predictor variables.

The evaluated machine learning algorithms and their main design parameters are summarized in what
follows.

1. LASSO Regression: The parameter A is set in the range from 0.0001 to O with increments of
0.00001.

Ridge Regression: The parameter A is varied in the same range as for LASSO Regression.
Decision Trees: The maximum depth parameter ranges from 10 to 100, with increments of 1.
Random Forest: The number of estimators is in the range from 4 to 200, with increments of 1.
Gradient Boosting: The number of estimators is set in the same way as with Random forest
method.

ke
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6. K-nearest Neighbours: The algorithm is set with neighbours ranging from 1 to 200.

7. Support Vector Regression: Various kernels, including Radial Basis Function, and 1%t-, 2M- and
3rd-order polynomial are examined.

8. Multilayer Perceptron (MLP) Neural Networks: The number of layers and nodes varies from 1 to
4 and 16 to 512, respectively.

9. 1D Convolution Neural Networks: The same architecture parameters are considered as with
MLP neural network, all with the stride of 1.

Table 4 displays the best-performing configurations for each algorithm. Evidently, the advanced
regression techniques do not considerably surpass the quadratic regression model when the
validation performance is concerned, which is evidenced by the RZ,, index differing only at the third
decimal place. Moreover, the advanced techniques typically perform poorly when tested on
extrapolation datasets (see, e.g., results for high-order models in Table 3). So, even when the advanced
models are trained on the aggregate dataset as done in Table 4, they may considerably underperform
the quadratic regression model for real-world scenarios not fully captured by the aggregated dataset.
Hence, due to its simplicity and strong performance, the quadratic regression model is recommended
in applications.

It has been demonstrated in Table 3 and 4 that the regression model is characterised by a high R?
score on different sets of seen and unseen data (at least 0.97, meaning that 97% of the variability in
the dependent variable can be explained by the predictor (independent) variables). In an attempt to
analyse the possible root causes of the remaining modelling errors and potentially enhance the model
performance, additional features have been derived from the driving cycles used in the model
development phase. In addition to the four selected predictor variables (see Table 4), the mean
positive (u,+) and negative (u,-) accelerations, as well as their standard deviations (o ,+, g,-) and the
standard deviation of velocity (o,,) are employed as influential variables related to vehicle dynamics.
By using this extended set of predictor variables, an MLP neural network model with four hidden
layers has been implemented.
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Table 4 Comparative performance metrics of different machine learning algorithms using previously
selected features

Nfl::tz?';: f Predli:cet?)tru\'::i/ables RMSE, [kWH] | RMSE.q, [kWh] Re: Ry
Quadratic Regression
4 Hrgs Migs OF gy Iy Tipass 0.9922 0.9922 0.9756 | 0.9756
LASSO Regression
4 Hrgr Bogs OFgs Hy ™ Tipass 0.9922 0.9922 0.9756 | 0.9756
RIDGE Regression
4 Hrgr Mg, OFgs Hy ™ Tipass 0.9922 0.9922 0.9756 | 0.9756
Decision Trees
4 Hrg) Org, By Mpass 0.0079 1.3208 1.0000 | 0.9558
Random Forest
4 Hrg) Org, By Mpass 0.3518 0.95 0.9969 | 0.9771
Gradient Boosting
4 Hrg: Orgs By Mpass 0.9124 0.9399 0.9789 | 0.9776
K-nearest Neighbors
4 Hrg) Org, By Mpass 0.8868 0.9828 0.9801 | 0.9760
Support Vector Regression
4 Hyg) Orgs My, Tpass 0.9448 0.9477 0.9774 | 0.9772
MLP Neural Networks
4 Hrg) Org, oy, Mpass 0.9450 0.9473 0.9774 | 0.9772
1D Convolution Neural Networks
4 Mg, Org, By Mpgss 0.9581 0.9582 0.9767 | 0.9767
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The corresponding modelling results shown in Table 5 indicate that the validation index R2,; increases

from 0.9772 to 0.9890. This reveals that (i) the limited performance of the models from Table 4 is
more because of the limited set of features than the limited model structure, and (ii) the model with
trip-based features can closely match the original, high-sampling-rate physical model, provided that
the trip-based feature set is rich enough. However, despite the commendable performance, practical
application of the model based on the additional, acceleration-based features is constrained by limited
data availability. Namely, the typical bus tracking data are sampled too slowly to consistently capture
the fast transients of vehicle acceleration signals. Hence, the quadratic regression model (3) remains
to be recommended for application due to low data demands, simplicity, and still favourable accuracy
(Table 5).

Table 5 Comparison of model performance with enhanced feature set

Number of Features/ RMSE,, RMSE R? R?
features Predictor variables [kWh] [kWh] tr val

Quadratic Regression

4 Hrgr B2gs OFgs My Tipass | 0.9922 0.9922 0.9756 | 0.9756
MLP Neural Networks

4 Hrg, Orgs My, Mpass 0.9450 0.9473 0.9774 | 0.9772

ﬂrg» arg» Uy, ﬁpassr
9 0.6994 0.6996 0.9892 | 0.9890
O-'ul ”a"') ﬂa—; aa+1 O-a_

3.6.2 HVAC system model

The HVAC power consumption regression model developed and indirectly experimentally validated
within the physical e-bus model (Subsection 3.2) has a quadratic form gained by a feature selection
method for four inputs: ambient temperature T,, solar irradiation Qs,;, ridership n,,ss, and vehicle

velocity v,,qp:

Puvac = Bo + BTy + B2Qsor + B3Npass + BaVven + BsTaVpen + BeQZ1 (3.12)
For integration into the trip-based data-driven model, the features of the HVAC model are averaged
on a per-trip basis. This modification is justified by two assumptions: (i) the ambient conditions, such
as solar irradiation and temperature, remain approximately constant during a relatively short bus trip,
and (ii) the velocity and ridership variables, which may significantly change during the trip, are of
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secondary influence on the HVAC consumption when compared to the influence of ambient condition
variables. To further suppress the influence of velocity and ridership variations on mean value model
accuracy, it is good to avoid the nonlinear terms present in model (3.12). It has been shown that this
intervention does not considerably deteriorate the accuracy of physical model, but notably improves
the accuracy of the mean value model, which is, thus, formulated as:

PHVAC = ﬁo + ﬁlTa + ﬁZQsol + ﬁ3ﬁpass + ﬁéhuw (313)
where the mean predictor variables are calculated over the trip, i.e., the driving cycle. The HVAC
energy consumption per trip is then determined as:

Envac = teripPrvac, (3.14)

where ty,.;;, is the trip duration.

The mean value HVAC model (3.14) has been tested against the original model (3.12) by using the
five-fold cross-validation method illustrated in Fig. 18. The corresponding RZ,; value is 0.999 and an
RMSE,; is only 0.128 kWh. This confirms that the mean value HVAC system model can be used with
a negligible loss of accuracy.

3.6.3 Analysis of model residuals

A practical analysis of the model residuals is carried out separately for powertrain and HVAC models,
as well as for the full vehicle model. The analysis results relate to the validation dataset aggregated
from validation folds in Fig. 18.

Powertrain model. An essential step in evaluating regression models involves examining the spread
of residuals against the predicted values, which should be distributed around a horizontal zero-value
line without forming any distinct patterns [10]. The residual plot of the powertrain quadratic
regression model from Table 4 is shown in Fig. 23a. It indicates a slight slope of -0.015 kWh/kWh
around the zero-value line, thus confirming the model consistency. Fig. 23b shows that the model
predictions scatter closely around the ideal, identity line.
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Fig. 23 Powertrain model residuals plotted vs. predicted values (a) and model predicted vs. true value plot

(b)

The normality of residuals is another model assessment criterion. Fig. 24a demonstrates that, despite
the p-value being lower than the normality threshold, the residuals exhibit an unbiased, symmetric
distribution resembling the normal distribution. The distribution of relative residuals, shown in Fig.
24b, indicate that a great majority of relative residuals (actually 90% of them, see Table 6) fall below
the margin of 8%. The Q-Q plot in Fig. 24c provides further illustration of the residual distribution
normality by plotting the residuals in a manner that should form a straight line if they are normally
distributed. Fig. 24d shows a heat plot of the residual versus true value. It reveals that the higher
relative residuals are associated with lower predicted values, which is apparently due to the nature of
relative residual calculation that tends to be more sensitive to smaller values. Table 6 provides a
summarized residual statistic.

Table 6 Characterization of absolute and relative residual distributions of powertrain model

Mean | Std. 1% 5% 10% 15% 25% 50% | 75% | 85% | 90% | 95% | 99%

Absolute [kWh] | -0.06 | 0.85 | -2.31 | -143 | -1.02 | -0.78 | -047 | -0.06 | 0.31 | 0.62 | 0.87 | 1.35 | 2.56

Relative [%] -0.50 | 6.93 | -18.70 | -11.51 | -852 | -6.75 | -443 | -045 | 346 | 5.87 | 7.65 | 10.72 | 17.83
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Fig. 24 Characteristic powertrain model residual plots

HVAC model. Fig. 25 shows the main residual plots of the HVAC model given by Egs. (3.13) and
(3.14), while the corresponding statistics is given in Table 7. The 90% of residuals fall below the
absolute and relative margins of 0.16 kWh or 3.74%, respectively, which confirms the good modelling
accuracy.
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Fig. 25 HVAC model predicted vs. true value plot (a) and corresponding relative residual distribution plot

(b)
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Table 7 Characterization of absolute and relative residual distributions for HVAC model

Mean | Std. 1% 5% 10% 15% 25% | 50% | 75% | 85% | 90% | 95% | 99%

Absolute [kWh] | 0.02 | 0.11 | -0.25 -0.16 | -0.09 | -0.05 | -0.02 | 0.01 | 0.06 | 0.11 | 0.16 | 0.25 | 0.37

Relative [%] 0.85 | 205 | -2.86 -2.05 -1.64 | -1.29 | -0.51 | 0.52 | 2.09 | 3.19 | 3.74 | 448 | 6.28

Full model. Fig. 26 shows the residual analysis results for the full e-bus model (both powertrain and
HVAC models). The relative residual distribution is narrower than for the powertrain model itself (cf.
Figs. 26b and 24b) due the accuracy contribution of the HVAC submodel. Consequently, the score
R2,, of the full model (when validated on the aggregate dataset) lifts from the powertrain model
validation value of 0.9756 (Table 4) to 0.9812.
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Fig. 26 Full e-bus model predicted vs. true value plot (a) and corresponding relative residuals distribution
plot (b)

3.7 Short conclusion

A data-driven regression model for predicting the electric city bus battery energy consumption has
been built up. The model has been parameterized and validated based on a comprehensive data set
obtained by simulating an experimentally validated physical model over a wide set of naturalistic city
bus driving cycles. The model relies on typically available trip-related data, as opposed to the physical
model that requires high sampling rate driving cycle data. It consists of independent powertrain and
HVAC submodels. For the powertrain, a feature selection method has been used to find an optimal
quadratic regression model for the specific energy consumption (in kWh/km), where the selected
features include the mean road grade and its square, the road grade standard deviation square, and
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the product of mean velocity and ridership. The model performance (characterized by the validation
R? value of 0.976) is comparable with more complex methods such as neural networks and gradient
boosting, but with the added advantage of greater simplicity and robustness.

The original HVAC system model with four inputs (ambient temperature, solar irradiance, vehicle
velocity, and ridership) has been reformulated to have (i) a mean value form to be applicable to trip-
based inputs and (ii) a linear structure to suppress the influence of velocity and ridership variation on
the mean value modelling accuracy. When validating the full model on an aggregate dataset, it
registered a notable R? score of 0.981, thus confirming its capability to accurately describe the energy
consumption patterns.

The developed e-bus model provides a solid basis for accurate and computationally efficient
description and simulation of city bus fleets for electrification planning purposes. The presented
approach of modelling the 12m fully electric city bus can be applied to other bus sizes (e.g., 18m) and
types of city buses (e.g., HEV, PHEV, and H2 buses).

4 Charging configuration optimization
4.1 Introduction

An integral part of the transport system electrification planning is optimization of charging
configuration. When concerning an e-bus transport system, charging configuration optimization aims
at selecting terminals to serve as fast charging stations and selecting the number of chargers per each
terminal to minimize investment cost and service delay.

To this end, this section deals with city bus fleet charging configuration optimization resulting in the
optimal selection of charging terminals and the number of chargers installed on those terminals. The
charging terminals are selected for (i) the predefined e-bus fleet defined by the number of buses, bus
type, and battery capacity and (ii) predefined bus lines, schedules, and timetables. The optimization
objectives to be minimized include the number of charging terminals, the total number of chargers,
and the total (cumulative) service delay with respect to timetables. The optimization is based on the
pilOPT multi-objective genetic algorithm (GA) provided in the modeFRONTIER optimization
environment, which is connected with a transport system macro-simulation model implemented in
programming language Python. To reduce the input space represented by the number of chargers on
different terminals, and thus improve convergence properties of the GA, the modified greedy set-
cover algorithm is developed and used in pre-optimization. To illustrate the effectiveness of the
proposed method/tool, the optimized charging configurations are compared with near-optimal
charging configurations previously found through expert knowledge.
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The charging configuration optimization tool is demonstrated on a real city bus transport system
corresponding to 29 lines/routes, 25 terminals, and 303 buses operating in the city of Jerusalem [7].
The transport system macro-simulation model is built based on real-life travelling time and terminal
dwell time data for every route and direction on an hourly basis throughout the operating day. These
data have been retrieved from the GPS tracking data collected on the existing (Diesel) bus fleet
operating on the given routes. The transport system model also includes the energy consumption
maps for e-buses, which have been determined by simulating the physical e-bus model from Section
3 over the high-resolution driving cycle data. The driving cycle relates to the peak day in view of
traffic load and weather conditions, thus concerning the worst-case scenario of powertrain and HVAC
system energy consumption, respectively.

The remaining part of this section is structured as follows. Subsection 4.2 provides an overview of
the optimization framework. Subsection 4.3 describes the transport system macro-simulation model
used to simulate the city bus fleet. Greedy algorithm-based optimization of charging locations used
for search space reduction is described in Subsection 4.4. Subsection 4.5 presents the overall charging
system configuration optimization algorithm, with the results given and discussed in Subsection 4.6.
Subsection 4.7 presents concluding remarks.

Note: The work presented in this section has been disseminated through the following conference
paper, which also includes a methodology state-of-the-art review and elaborates on the contributions
of the approach proposed:

D. Matkovi¢, J. Topi¢, B. Skugor, and J. Deur, “Search Space Reduction-Supported Multi-objective
Optimization of Charging System Configuration for Electrified City Bus Transport System”, 17t Conference
on Sustainable Development of Energy, Water and Environment Systems (SDEWES), Paphos, Cyprus, 2022.

4.2 Optimization framework

This subsection provides an overview of the optimization framework shown in Fig. 27 and aimed to
determine the optimal charging configuration for an e-bus transport system. The optimization
framework consists of (i) a modeFRONTIER optimization tool based on the pilOPT algorithm and (ii)
a macro-simulation model of the transport-energy system that is run in Python in every optimization
iteration. First, the design of experiments (DOE) is defined, which sets the initial charging
configuration and is generated by pilOPT algorithm. The number of chargers at each terminal is
denoted by Ch;, i = 1,...,n, where the subscript i denotes the terminal index and n is the number of
terminals. It is requested that the minimum number of chargers per charging terminal is Nchmin = 2,
while the maximum number of chargers is equal to the number of buses N, coming to the terminal.
This is implemented through the constraint Nehmin < Chi < Np, with the note that if a terminal has no
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chargers installed, the number of chargers Ch; is set to 0. The second constraint, RC; 21 is related to
the number of charging terminals RC; placed at a bus route (or line) re[1,N;], where N, is the number
of routes. There are three objectives to be minimized, which are denoted by J;, i€[1, 3] (see Fig. 27),
and which relate to the total number of chargers (N¢), the total number of charging terminals (N¢:) and
the total time delay for all buses' departures during the single-day operation (Dtt) affected by charging
constraints, where N and N are calculated directly from the optimized charging configuration, and
D:ot is obtained from macro-simulation. The charging configuration is represented by the set [Chy,...,
Chy], i.e. by the number of installed chargers at every terminal. The macro-simulation model
parameters include the bus schedule set, S, a deadzone time, T4, the charging power, P, and the e-
bus battery energy capacity, Epait. The deadzone time Ty is the minimum time the bus should spent at
the charging terminal to start charging, representing the time needed to park to the charger spot and
plug in the charger.

Optimization framework

Simulation parameters:
S — driving schedule
T4z — deadzone time
P, — charging power
Epate — battery capacity

DOE (Design of Experiments)
[chy, Chs, ..., Chy)

! .

Optimization algorithm h 4 Pareto frontier

oW

Macro-simulation tool
Constraints: Charging configuration: -
1 RC,z17r=1,..,N, [Chy Chs, ., Chy] 9 N
2 Chl = [Ole]/{l} @"-Fj:q 9 gUU.. :
Objective functions: R o X lsceses B
1. J, = min(N,) 9_‘@
2. ] =min(Ng)
3 J3 = min(Deor)

Macro simulation results
1. N, —nwmber of chargers
2. Ny —number of charging terminals
3. Dy — total delay time

Fig. 27 Block diagram of optimization framework used for optimizing charging configuration

The optimization algorithm iteratively generates a charging configuration used as an input to the
macro-simulation model, which simulates the driving missions over the peak-load day based on the
specified simulation parameters. The simulation results are used in the optimization algorithm to
generate a new charging configuration to minimize the objective functions including the number of
charging terminals, the total number of chargers, and the total bus delay time affected by prolongated
bus departure due to the charging waits, subject to optimization constraints.
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4.3 Transport system macro-simulation model

The macro-simulation model describes the city bus transport and energy system on a daily basis and
with a time step of one minute. It simulates a bus fleet containing 303 buses allocated to 29 routes
and 25 terminals in a part of the city of Jerusalem. Each bus operates only on one of the routes.
Simulation outputs are post-processed to obtain detailed transport analysis data for every route and
bus, including the dwell time at each terminal, the delay time of driving missions, and a variety of
metrics regarding the battery state of charge (SoC; actually a state of energy), energy charged, and
bus utilization.

Fig. 28 overviews the macro-simulation model in the form of a flowchart. In every sampling instant
(with a sampling time of 1 minute) the algorithm checks the scheduled departure and arrival time for
driving missions (service trips). A trip is allocated to the bus with the largest battery SoC (from the set
of buses assigned to that route), while considering the constraint that the bus cannot leave the
terminal (if equipped with chargers) if SoC <20%. If there is no bus with SoC = 20% at the charging
terminal, the departure is postponed, i.e. a delay occurs. The trip travel time and the energy
consumption are obtained from the corresponding maps, which have been determined (i.e., pre-
processed) from the recorded driving cycle data and the e-bus physical micro-simulation, and they
are stored in a database over different routes and on an hourly basis. The bus battery SoC is updated
at the end of a trip in accordance with the energy consumption of the driving mission (including the
HVAC system energy consumption which depends on the external ambient conditions, i.e. the time
of the day). After the bus arrives at the terminal, a simple heuristic charging management algorithm is
executed.

The charging management algorithm is described by the flowchart shown in Fig. 29. First, when a bus
arrives at the terminal equipped with chargers, it gets connected to the unused charger if there is any.
If all chargers are occupied, the bus with the largest SoC gets disconnected, but only if its SoC is
greater than the SoC of the arrived bus. When the bus battery is fully charged (SoC=95%) or a bus
with SoC 2 20% is scheduled to depart, the bus disconnects from the charger, and the bus with the
lowest SoC connects.
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Fig. 28 Flowchart of macro-simulation model
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Fig. 29 Flowchart of heuristic charging management algorithm
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4.4 “Greedy algorithm” based optimization of charging locations

The e-bus transport system includes 25 terminals, which may or may not include chargers (two
options), which results in 22° = 33,554,432 possible charging configuration combinations. Thus, it
would be very time-consuming to manually find viable charging configuration combinations to be
used in full optimization in Subsection 4.5, while considering the route coverage constraint meaning
that every route has at least one charging terminal. Therefore, a modified greedy set-cover algorithm
for charging terminal candidates’ optimization is proposed in this subsection. The search space is
reduced by decreasing the number of input variables, in this case the charging terminal candidates,
otherwise set to all terminals.

4.41 Charging candidate problem

The charging terminal candidate problem is defined as finding the minimum number of charging
terminals while considering the route coverage constraint. Since there may be more distinct
configurations with the same minimum number of charging terminals, the charging candidate problem
should cover all those minimum configurations. For this purpose, a modified greedy set-cover
algorithm is designed. The final reduced input space or reduced charging candidate set is determined
as the union of charging terminals in all configurations obtained from the modified greedy set-cover
algorithm.

Since the greedy algorithm for the set-cover problem presented in [11] returns only one solution,
while the charging candidate problem should ultimately return all charging configurations with the
minimum number of charging terminals satisfying the route coverage constraint, a modified greedy
algorithm is proposed. The details are given in the next subsection.

4.4.2 Modified greedy set-cover algorithm for charging candidate optimization
The mathematical formulation of the set-cover problem is as follows:

Given the elements of U = {uy, uy, ..., un},
Subsets S4,S,,... ,S, € U, 4.1)
Weights wy, w,, ... ,wy,

find I € {1,2,...,k},

that min e wy, s.t. U, Si = U. (4.2)
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The greedy set-cover algorithm is shown in Algorithm 1 below and is described in [11]. It executes in
the following steps: (i) initializes empty array of selected subsets S;,S,, ..., Sy, (ii) iterates while the
array of selected subsets does not contain all elements from set U and, in every iteration, it selects
the subset with the smallest cost. The cost function is the ratio between the subset cost and the
number of elements contained in a subset, not added in the array of selected subsets. The subset
weight is predefined, and it depends on the system, where sometimes it may be the same for all
subsets, but it may also be diverse.

Algorithm 1: Greedy set cover algorithm
Data: U, S;, ..., Su,wi, ..., wy
Result: ¢ =)
while C' # U do

D+ U\C,

for i <1 to n do

Sinp|
uly ?

| R
end
Si* «— max(c, ..., ¢p);
C + CU Sj*;
end

return '

The proposed, modified greedy set-cover algorithm is a version of the original algorithm, where the
modifications relate to ultimately returning all possible combinations of configurations with the
minimum number of charging terminals and adapting the cost function according to the bus transport
system. The mathematical formulation of the modified set-cover problem is the same as for the set-
cover problem, as given by Egs. (4.1) and (4.2), while the programming implementation has a few
modifications, as given by Algorithm 2 below.

Algorithm 2 executes in a dynamically chosen number of iterations, and it runs as follows: (i) it
initializes an empty set of generated configurations, (ii) starts iteration and stops when no new
combination or configuration is found for at least 20 iterations, and (iii) in every step it generates
weights for every subset; in this case, the subset is represented as a set of routes covered with every
terminal, (iv) for previously generated weights, the algorithm iterates and builds new configuration
based on the cost function that prioritizes the terminals that cover more routes in total and more of
the uncovered routes, scaling it with the weights wy, w,, ... , wy, (v) when no configuration is generated
for at more than 20 iterations, the algorithm returns charging configurations with the minimum
number of charging terminals. The cost function is the ratio of the sum of the total number of routes

Confidential: This document is property of the OLGA Consortium and shall not be distributed or reproduced
without the formal approval of the Consortium

55/118



OLGA_D2.1_SoftwareSolution_ebusTransportElectrification_TransportSystemOptimization_v1.docx '

covered by the terminal and uncovered routes divided by the terminal weight value. The weights are
generated by using Gaussian distribution with the mean value u equal to 3 and the standard deviation
o equal to 1. These values are empirically chosen to introduce randomness to the cost function, i.e.
to generate distinct weights w,, w,, ... ,wy, in every iteration resulting in more charging combinations.
In the case of the same weights in every iteration, the algorithm would result in one configuration
combination.

Algorithm 2: Adapted grosdy sct cover algorithm
Diata: 17 5;, ..., 5,
Result: =@

i 1

C8yiy T

1

while ¢ < 20 do
Wy ey ity — N2, o)
=1

while [ # U do

= LN

for s+ 1 ton do

| o o SN0,
. :

||-|
end

Sk i AX(e), e, O
I T 5=

e

if §¢ ¢ then

C+|C,1);

CSpade = TR C8ygn, [ £]):

end

e

for I c ' do

if [{]| = ¢80, then

| Cmin — [Crin, C);
end

cnd

- h )
return Oy

4.4.3 Charging candidate optimization results

Fig. 30 shows the assighment of terminals to the routes of considered city bus system. The goal is to
find the minimum charging configuration combinations satisfying the route coverage constraint
meaning that each route is covered by at least one charging terminal (Subsection 4.2).
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Fig. 30 Route and belonging terminals of the considered city bus system

Table 8 shows the combinations of minimum charging configurations found (i) “manually” based on
expert knowledge and (ii) using the proposed modified greedy set-cover algorithm. Only one
combination of charging configurations with the minimum number of charging candidates was
succeeded to be found manually, while the modified greedy set-cover algorithm has managed to find
four distinct combinations, including the manually found one. The reduced input space-based
optimizations (Subsection 4.5) consider the union of charging terminals determined by the greedy set-
cover algorithm (marked green in Table 8). That said, the number of input variables (set by default to
[Cha,...,,Chp] in Fig. 27), i.e. terminals decreases from n = 25 to 10, which is a significant improvement
in terms of search space reduction.

The modified set-cover greedy algorithm has proven to be a computationally efficient space reduction
approach, as its execution time for the given, relatively large transport system takes only 7 ms on the
processor Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz and installed RAM with 8.00 GB.
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Table 8 Charging candidate optimization results obtained by expert knowledge (i.e, 'manually') and
application of modified greedy set-cover algorithm

\“‘\\ Terminal Number of

501 s02 | s03 |s04 | s05 | s06 |s07 | s08 |s09 s10|sll|s12|sl13 |s14|s15|s16 s17 s18|s19|s20|s21|s22|s23|s24|s25| charging

Configuration T terminals
Manually found combination 0 x | 0|x|0|0|0|x |0 x|x|x|0|x|0|0|x O|0/ 0|O0|O0O|O0O|O]|O 8
Greedy combination 1 0|/ x 0|O0|0| 0|0 | x |0 x|x|0|x|x|x |0 x|0|0 0 O0|(0|0|0|0 8
Greedy combination 2 0 x 0| x| 0/ 0|0 | x |0  x|x|0|0|x|x|0|x O|O0O 0|O0O|O|O|O]|O 8
Greedy combination 3 0|/x OoO|lO0O|0| 0|O0|x|0|x|x | x| x|x|0|O0|x | 0|0 0 0|O0|O0 |0 0 8
Greedy combination 4 0| x 0|x |0 0|0|x |0 x|x|x|O0|x|O0|0|x|0|0 0 O0|(0|0|0|0 8

4.5 Optimization of overall charging system configuration

This subsection presents details of the overall, multi-objective optimization framework built around
modeFRONTIER genetic algorithm pilOPT. Fig. 31 shows the modeFRONTIER optimization scheme,
which includes inputs that represent charging configuration (marked green), and outputs that are used
in constraints and objective functions evaluation (marked red). The next subsections explain in detail
each component of the optimization scheme.
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Fig. 31 modeFRONTIER scheme of overall charging configuration optimization
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4.5.1 Objective functions

As outlined in Subsection 4.2, the considered objective functions to be minimized include the total
number of terminals equipped with chargers (N¢), the total number of chargers (Nch), and the total
city bus transport system delay time (Dtot):

min N 4.3)
min N, (4.4)
min D;,; (4.5)

The objectives Nes and Nen are simply determined from the charging configuration candidate
generated in each iteration of genetic algorithm, while Dot is calculated by the macro-simulation
model (Subsection 4.3).

4.5.2 Optimization problem constraints
As discussed in Subsection 4.2, the optimization constraints are formulated as:

Ch; = [0,Np]/{1}, i = 1,...n (4.6)
RC, =1, r=1,.N, (4.7)

The constraint (4.6) specifies that the number of chargers at every terminal needs to be in the range
from O to N, except 1. Namely, it is deemed to be cost-ineffective to build the whole terminal
charging infrastructure for only one charger. The constraint (4.7) represents a route coverage
constraint meaning that every route needs to include at least one charging terminal. Note that since
every charging terminal has at least 2 chargers, the minimum number of chargers available on any
route is 2.

4.5.3 Optimization scenarios

Table 9 overviews the scenarios for which the optimization and related analyses will be carried out in
the following subsections. There are four scenarios, each with its own properties related to pilOPT
algorithm modes, number of iterations in the case self-initialized mode, and the input space size. The
pilOPT algorithm has two operational modes: autonomous and self-initialized mode, where the former
stops when the Pareto frontier cannot improve any further, while the latter halts when a predefined
number of algorithm iterations is exceeded.

The first scenario is the basic one, where all terminals can be charging terminal candidates, and the
optimization algorithm is running in autonomous mode. The second scenario has a reduced input
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space, where the number of charging terminal candidates is reduced from 25 to 10, as discussed in
Subsection 4.4. The charging candidates can have the number of chargers in the range [2, N,], while
the number of chargers for no-charging candidates is set to O. The third scenario involves the self-
initialized mode and the reduced input space, where the pilOPT algorithm is initialized to the number
of iterations that was automatically generated in the first scenario. Finally, the fourth scenario is the
same as the third one, but the number of iterations is set to the maximum value of 20,000.

Table 9 Overview of charging configuration optimization scenarios

. . Number of iterations (only
Scenario pilOPT mode for self-initialized mode) Input space
1) Autonomous complete space Autonomous - Whole input
space

2) Autonomous reduced space Autonomous - . Reduced
input space

S Lo Reduced

3) Self-initialized reduced space Self-initialized 11723 .

input space

4) Self-initialized reduced space Il | Self-initialized 20000 _Reduced
input space

4.5.4 Comparative analysis

Table 10 shows which charging configuration combinations from Table 8 are found in which
optimization scenario from Table 9. The labels Feasible and Pareto optimal designate whether the
solution is feasible (in terms of satisfying the constraints) and Pareto optimal (the best at least in one
objective), respectively. “Greedy combination 4” results in feasible and Pareto optimal solutions for
all optimization scenarios, while other configuration combinations yield only feasible solutions and
only in some optimization scenarios.

The reason for the success of Greedy combination 4 has been found to lie in the effect that charging
terminals selected in that configuration have bigger terminal dwell time (the time between arrival and
departure) than other charging configuration combinations. According to Table 8, Greedy combination
1 relies on charging terminals s13 and s15, while Greedy combination 4 uses terminals sO4 and s12 for
charging. Also, Greedy combination 3 involves the terminal s13, as opposed to s04 in the case of Greedy
combination 4. The dwell time graph shown in Fig. 32 indicates that the terminals s04 and s12 indeed
have significantly higher dwell time than the terminals s13 and s15 (approx. 18 min vs. 10 min in
average), which makes them more suitable charging candidates (higher charging availability). Similarly,
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Greedy combination 2 involves the charging terminal s15, which has lower dwell time as opposed to
s12 of Greedy combination 4.

Table 10 Overview of the charging configuration combinations found in each scenario, both according to
all feasible and Pareto solutions

conf.i: I:_E::gg Greedy Greedy Greedy Greedy
com?:ination combination 1 combination 2 combination 3 combination 4
(Feasible / (Feasible / (Feasible / (Feasible /
Scenario Pareto optimal) | Pareto optimal) | Pareto optimal) | Pareto optimal)
1) Autonomous complete space -/ - -/- -/ - +/+
2) Autonomous reduced space -/- +/- + /- +/+
3) Self-initialized reduced space + /- +/- +/- +/+
4) Self-initialized reduced space Il + /- +/- +/- +/+
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Fig. 32 Terminal dwell time statistics
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4.6 Results and discussion

In this subsection, the results for optimization scenarios defined in Table 9 are presented and
discussed. First, optimization results are given, and they are then supplemented by detailed macro-
simulation results.

4.6.1 Optimization results

The first scenario from Table 9 is the “Autonomous complete space” scenario, which concerns the
complete (unreduced) input space and autonomous mode of pilOPT algorithm. The optimization
resulted in 11,723 iterations and it managed to find charging configurations with minimum 8 charging
terminals and the total number of chargers in the range from [23, 45], as shown by the 3D Pareto
frontier in Fig. 33a. This solution agrees with the results presented in Subsection 4.4 and Table 8, i.e.
the full optimization finds the same minimum number of charging terminals as greedy algorithm did.
The Pareto frontier in Fig. 33a suggests that the total transport system delay time, as the third
objective, can be reduced (blue tones) if the number of charging terminals and/or the number of
chargers is increased.

When reducing the input space (Fig. 33b, Scenario 2), the optimizer again finds configurations with
minimum 8 charging terminals, but the number of chargers increase to lie in the range [30, 35], which
is suboptimal in comparison to the previous optimization scenario. Since the corresponding number
of iterations is also significantly lower (4,475 vs. 11,723), this result can be explained by the solver
getting stuck in local optima.

When using the self-initialized mode with the pre-specified number of iterations (equal to that of the
first scenario, i.e. 11,723; Scenario 3), the Pareto frontier shown in Fig. 33c is obtained. Again, the
configurations with minimum 8 charging terminals are found, but the total number of chargers is
reduced to the range [18, 27]. This is a significant improvement in the comparison with the first and
second optimization scenarios, which is due to the reduced input space.

When using the maximum number of iterations, which is 20,000, the optimization results in the Pareto
frontier shown in Fig. 33d (Scenario 4). Here, the optimal configurations with the minimum number
of charging terminals equal to 8 are extended to the number of chargers in the range [16, 26], i.e. the
number of chargers can be reduced to 16 and 17 when compared to the third optimization scenario.
However, the maximum time delay for those two configurations is very large (more than 5 hours vs.
half an hour for the case of 18 chargers). Thus, those configurations are rejected as impractical, and
it may be concluded that the previous scenario (Scenario 3) could not be further improved. Its
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characteristic charging configurations marked by black circles in Fig. 33c will be analysed in detail in
Subsection 4.6.3.
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Fig. 33 Pareto frontiers obtained for different optimization scenarios from Table 10: a) Autonomous
complete space, b) Autonomous reduced space, c) Self-initialized reduced space, and d) Self-initialized
reduced space |l

4.6.2 Optimization procedure

Based on the results from the previous subsection, this subsection formalises the optimization steps,
as shown in Fig. 34 and elaborated as follows: (i) Autonomous complete space scenario is run first in
order to give the number of iterations for step (iii), (ii) Set of charging terminal candidates is generated
by using the modified greedy set-cover algorithm, as explained Subsection 4.4, (iii) Self-initialized
reduced space scenario is run with the number of iterations taken from step (i) and charging terminal
candidates from step (ii), (iv) Pareto frontier obtained in step (iii) is used to obtain configurations with
the minimum number of chargers and charging terminals.
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4.6.3 Simulation outcomes for Pareto optimal solutions

The optimal configurations obtained in Subsection 4.6.1 (see Fig. 33c) based on the procedure
summarized in Subsection 4.6.2 (i.e., Fig. 34) are analysed in this subsection based on the macro-
simulation results. The results are compared with those corresponding to the charging configurations
found manually, i.e. through expert knowledge (see Table 8). The purpose of the detailed analysis is
to assess charging configurations and get a detailed overview of macro-simulation results (i.e. final-
SoC distribution, energy-charged, number of utilized buses, dwell time etc.).

The macro-simulation results presented in Fig. 35 contain 6 plots. The first plot shows the e-bus SoC
values at the end of the day (i.e., the final SoC, SoCy) for every route. The second graph is a bar chart
of the final SoC categories related to unacceptable (Son < 0), risky (0 < SoCy < 20%) and safe
(SoCr = 20%) final SoC. The third plot shows the total energy charged to all buses at each route. The
fourth plot is a boxplot representing the available charging time statistics. The fifth graph shows the
number of utilized/unutilized buses on every route. The last (sixth) plot gives the boxplot statistics of
the individual bus delay time for every route.
Use greedy algorithm to find all feasible

combinations with minimum number of
charging terminals.
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Fig. 34 Optimal charging configuration optimization setup
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As discussed in Subsection 4.6.1, the Pareto frontier gathered from the “Self-initialized reduced
space” scenario (Scenario 3), shown in Fig. 33c, resulted in configurations that had [18, 25] chargers
distributed on 8 charging terminals, which corresponded to the minimum number of charging
terminals when satisfying the route coverage constraint. For the sake of simplicity, only
configurations with upper and lower bands of the number of chargers (designated by circles in Fig.
33c) have been simulated and are discussed below. Fig. 35 presents the macro-simulation results for
the lower-band configuration with 18 charging terminals.

The optimal configuration with 18 chargers is sustaining, i.e. all buses have SoCr > 0. The
total/cumulative delay time per bus is reasonable, with minimum values of 1 min, and a peak lower
than 30 minutes. Note that some routes (i.e. r05 and r12) have no delayed missions. Thus, this
configuration may be deemed as overly satisfactory. However, some routes are characterized by low
final SoC; e.g., route r03 has a bus with a final SoC value of around 5%, which can be regarded as risky
and can be improved by adding more chargers to a terminal of that route.
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Fig. 35 Macro-simulation results for optimal charging configuration related to 8 charging terminals and
18 chargers (see left-hand side circle in Fig. 33c)
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Fig. 36 shows macro-simulation results related to optimal charging configuration with 25 chargers
(see upper-band circle in Fig. 33c). Since the number of chargers is increased by 7 compared to the
previous configuration, the final SoC values are higher, and accordingly the total delay time is
somewhat reduced (Fig. 36).

The configurations found through expert knowledge (i.e.,

“manually”) are listed in Table 11 based on

Table 8 and variation of total number of chargers. Table 11 also shows the above-considered, optimal
configurations. All the configurations have 8 charging terminals and a number of chargers in the range
[18, 46], where the charging configuration with the minimum number of chargers is the one obtained
by using the pilOPT optimization and analysed with Fig. 35.
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Fig. 36 Macro-simulation results for optimal charging configuration related to 8 charging terminals and

25 chargers (see right-hand side circle in Fig. 33c)
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Table 11 Manually-found and optimization-obtained charging configurations

Terminal Total Number of

501|502 |s03 s04 s05|s06|s07|s08 s09 s10 s11 s12 s13|s14 s15 s16/s17|s18(s19(s20(s21|s22|s523|s524|s25 number of| charging

Configuration chargers | terminals
Manually found configuration1 | 0 (11|, 0|2 0| 0|0 3|0 10 6| 4|0 8|0/ 0|2|(0|0|0|0|0|0|0|O0 46 8
Manually found configuration3 | 0 (12| 0|4 0 0|0 |3 O0 /8 8/ 3|  0|5/0/0|3|0|0|0O|0 0|00 0 46 8
Manually found configuration4 |0 (10, 0|2 0| 0|0 2|0 8 6|3 | 0/ 5|0/ 0|2|(0|0|0|0|0|0|0|0O0 38 8
Manually found configuration5 | 0 (7 (0|2 0 0|02 O0|/7 |6 | 3 0|40/ 0|2|0|0|0|0 0|00 0 33 8
Manually found configuration6 | 0 (6 | 0|2 | 0| 0|0 |2 0 6|5|2| 0|4 0|0/2|(0|0|0/0|0/ 0|00 29 8
Manually found configuration7 | 0 | 5|0 |2 /0 0|0 2 04|32 |4/0/ 0f2|0j0|j0OjO0 O0O]j0 |0 O 24 8
Reduced self-ini. pilOPT 18 o/ 4,0,2, 0 0/0|2 /0|2, 2|2|0/2 0|0 2|0|0|0|0|0 0|00 18 8
Reduced self-ini. pilOPT 25 o|/6/0/3 0/0/ 02 0 3/ 4 2 0 2 0 0/3| 0|0|0|0|0/0 00O 25 8

Table 12 shows comparative performance metrics based on the macro-simulation output data. The

pilOPT charging configuration with 18 chargers is optimal in terms of investment cost, but it has a

considerably lower final SoC value than other configurations having more chargers. Accordingly,

there is also a significant increase in the number of arrivals with SoCy < 20% than in other

configurations. To this extent, the configuration pilOPT 25 should be preferred over pilOPT 18, and
it is distinctively better than the manually found configuration with comparable (or even somewhat
higher) number of chargers in terms of final SoC and delay statistics.

Table 12 Overview of macro-simulation-based performance metrics for manually selected and optimal
charging configurations

Avg. Total Avg. Avg. Number Min. Number of Total
Configuration final energy dwell delay of nuLT:t:: of SoC delayed delay Count of arrival :\J‘E:lt: ‘:ﬁ_.:‘:;
g SoC charged time time charging chargers during departures time S0C <20% [ SaC < 20%
[%] [MWHh] [min] [min] terminals g day [%] [ [min] °
Manually found 50.1 545 188 8.67 8 46 545 607 5263 9090 16.55
configuration 1
Manually found 613 56.3 19.1 8.14 8 46 545 585 4760 8212 16.46
configuration 2
Manually found 55.6 51.6 188 8.67 8 8 5.45 607 5263 9411 165
configuration 3
Manually found 525 49 189 8.67 8 33 545 607 5263 9422 165
configuration 4
Manually found | g 46.3 18.9 8.67 8 29 5.45 607 5263 9460 16.51
configuration 5
Manually found 427 408 185 8.66 8 24 5.45 608 5266 9454 16.52
configuration 6
Self-ini. reduced . o
with 18 chargers | 31% 317 18.8 8.64 8 18 545 612 5286 11375 16.68
Self-ini. reduced | 4 g 40.0 188 8.14 8 25 5.45 585 4760 8926 165
with 25 chargers
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4.7 Short conclusion

A search space reduction-supported multi-objective approach of optimizing the city bus charging
configuration system has been proposed and implemented by using the pilOPT algorithm of
modeFRONTIER environment. The approach is summarized in Fig. 34, and includes (i) obtaining the
number of iterations from the “Autonomous complete space” scenario, (ii) utilizing the modified
greedy set-cover algorithm to reduce the input space, i.e. obtain the optimal charging terminals
candidates, (iii) creating the self-initialized optimization model with the number of iterations set as
obtained in step (i) and with a reduced number of charging terminals according to step (ii), and (iv)
analysing Pareto frontier solutions and choosing the one with a minimum number of chargers and
charging terminals while satisfying other practical/operational metrics such as those related to battery
state of charge (SoC) final value and cumulative bus departure delay caused by charging restrictions.

The selected Pareto optimal charging configurations have been compared with the ones found based
on expert knowledge. It has been demonstrated that the proposed optimization approach results in a
lower number of chargers keeping the total delay time low and ensuring bus transport system
maintainability in the view of battery state of charge.

5 Optimal charging management
5.1 Introduction

The proposed hierarchical EV fleet charging management is conceived to optimize the charging power
time profiles at two levels: (i) aggregate level, and (ii) distributed level of individual EVs (see illustration
in Fig. 37). The charging power profile on the aggregate level is meant to be optimized in a receding
horizon manner (a model predictive control approach, MPC) by using a simplified and numerically
efficient aggregate battery-based EV fleet model. The obtained optimal aggregate charging power is
then distributed over individual EVs in each time step by using a heuristic algorithm based on charging
priorities. The main advantage of this hierarchical approach is in simplicity of implementation and
excellent scalability to relatively large EV fleets (e.g., e-hubs; i.e., its computational complexity is
invariant to the number of EVs within a fleet).

The optimization on the aggregate level assumes the availability of predictions of different quantities
over a prediction horizon, such as arrival time of EVs (i.e., starting time of their charging) and related
battery state-of-charge (SoC), electricity price, power production from renewable energy sources
(RES), electricity consumption of other consumers within a local micro-grid, and similar. For instance,
in the case of e-bus fleets, the arrival time can be predicted from known driving schedules and
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historical and actual traffic data. Similarly, historical data and external condition prediction (e.g.,
weather forecast) can be used in connection with machine learning techniques to provide internal
and RES electricity productions, as well as electricity prices.
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Fig. 37 Concept of hierarchical EV fleet charging management framework

5.2 EV fleet models

Two types of EV fleet models are formulated and used [12]: (i) aggregate, and (ii) distributed; where
the first one considers all EVs within fleet as a single aggregated battery, while the second one models
each EV battery separately. The batteries are modelled as energy storages with the state-of-energy
(SoE) and the charging power as their state and control variables, respectively.

5.2.1 Aggregate EV fleet model
Dynamics of the aggregate EV fleet model is described by the following state equation [12]:

k
SOEqgq(k + 1) = SoE, (k) + SOE ayg (k) —— ‘”( ) _

k k AT
out( )+7] cagg( )
Nv NvEmax,lnd

(5.1)

SOEout,avg (k) , k=01,..,N:—1,

where k is the discrete time step, N, is the total number of time steps, SoE;, 4,y and SoE ¢ qvg are
average SoE values of EVs connecting to the grid and disconnecting from the grid within k" step,
respectively, with the corresponding number of EVs denoted by n;, and n,,;, respectively, N, is the
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total number of EVs within the fleet, P, 4, is the aggregate charging power, Ep,qxinq IS the energy
capacity of the individual battery (expressed in Wh; N, E,, 4, inq IS the energy capacity of all batteries
within the fleet), and AT is the time discretization (expressed in hours, [h]). The aggregate SoE state
variable SoE,, is defined as the normalized average energy of connected EVs:

»¥ E (k)

(5.2)
N. v Emax,ind

)

S0Eqq44(k) =

where E.; is the battery energy (in Wh) of it" EV, which equals the actual battery energy if EV is
connected within the kth time step, while it is zero, otherwise. The lower limit on SoEq44 is zero, while
the upper limit is set to be dependent on the number of EVs connected to the grid (n,):
n(k)

N,
The aggregate charging power is limited in the range from zero (only the one-direction power flow is
enabled, i.e., from a grid to EVs) to the charging power capacity of connected EVs:

0 < S0Eq44(k) < <1 (5.3)

0< Pc,agg(k) = nc(k)Pcmax,ind' (5-48-)

where Pqx.ina 1S the maximum charging power of individual EV. Additionally, the aggregate charging
power is limited by the fixed upper constraint:

Pc,agg (k) = Pc,agg,max' (5-4b)

to account for the grid power limit.
5.2.2 Distributed EV fleet model for offline charging power optimization

The model structure given by the state equation (5.1) may also be used to model the individual (it")
EV battery within a distributed EV fleet model as:

P ;(k)AT
SOEi(k + 1) = SOEi(k) + SOEin,i(k)nin,i(k) - SOEout,i(k)nout,i(k) + Nen E—’ (5-5)
max,ind
with related constraints:
0 < SoE;(k) < nepi(k), nep,; €{0,1} (5.6)
0< Pc,i(k) < ncs,i(k)Pcmax,ind' ncs,i € [O’ 1]’ (5-7)
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where N, from Eq. (5.1) is now set to 1 and thus omitted in Eq. (5.5), SoE;,,; and SoE,,,;; are SoE values
of the it" EV when it connects to and disconnects from the grid, respectively, and n;,; and n,,; are
binary variables taking the value of 1 if connection/disconnection of it" EV takes place within the kth
step, and O, otherwise. The state variable SoE; is defined similarly to the definition of SoE,,, in (5.2):
SoE;(k) = E.;(k)/Emax ina» Where E.; equals zero if it" EV is disconnected. The variable n, from Egs.
(5.3) and (5.4) is replaced by n., ;(k) in Eq. (5.6) and by n.; in Eq. (5.7), where n,,; represents the
binary variable taking the value of 1 if the ith EV is partially or fully connected within kth step, and O,
otherwise, while n. ; (k) represents a share of EV connection time within the k" step (e.g., n.s; = 0.1
means that a related EV was connected 10% of time step duration AT).

5.2.3 Distributed EV fleet model for simulation study

To strictly satisfy the lower SoE constraint in Eq. (5.6), 0 < SoE;(k), within the EV fleet simulation
model, the state equation of distributed model (5.5) is modified as:

S0Eine i (k), formng,. (k) =0,

O; for nout,i(k) = 1: (58a)

where SoE; at k+1 step takes an intermediate value SoE;,; if the EV is not disconnected at the k"
step, while it equals O, otherwise. The intermediate SoE value incorporates the SoE contributions
brought by EV connection to the grid (SoE;,, ;) and charging with the power P, ; (cf. Eq. (5.5)):

P ;(k)AT

S0Ein; (k) = SoE;(k) + SoE;, i(k)ni, (k) +ncp (5.8b)

Emax,ind
The SoE on departure, SoE,, ;, is updated in the (k+1)" step to SoE;,, ; (k) only if a new driving mission
starts at the k" step (n,y,, (k) = 1):

SOEout,i(k); for nout,i(k) =0,

S0Ein.i(k), forngy (k) =1. (5.9

SOEout,i(k + 1) = {

On the other hand, the SoE of an EV arriving from a driving mission and connecting to the grid in the
kth step, SoE;,;, i.e. when ny,;(k) = 1 holds, is calculated as a function of the SoE at previous
departure SoE (i.e., SoE,, ;(k)) and a travelled distance d;(k) of that driving mission:

0, for ny, (k) =0,
fsor (S0Eout,i(k), di(k)),  for nyy (k) = 1.

The upper constraints on individual charging powers are set to:

SOEin,i(k) = { (510)
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(5.11)

) 1 —SoE;(k) — SoE;, ;(k)n, ; (k)
Pc,max,i(k) = min <ncs,i(k)Pcmax,ind» l L = max,ind |’

nchAT
where the first term within the operator min(.) corresponds to the upper constraint of Eq. (5.7), while
the second one is to satisfy the upper SoE limit from Eq. (5.6) based on Eq. (5.8b) with SoE;,; ; limited
to 1 (recall that the lower SoE limit from (5.6) is ensured through the modified state equation (5.8)).

For the purpose of post-analysis, the SoE and charging power values of individual EVs from the
distributed model can be aggregated for each time step k as:

Ny
S0E gy (k) = z SoE,; (k) / N,, (5.12)
Praga () = Z Pl (5.13)

The charging power can be supplied from the grid (P;) or from the local renewable energy sources

(RES; P..,), with the priority of charging being given to RES while covering the eventual power deficit
from the grid:

_ (Peagg (k) — Pes(k), for Pc,agg(k) — Pes(k) >0,
Py (k) =

5.14
0, otherwise. ( )

5.3 Offline charging management optimization

The main aim of EV fleet charging optimization is to minimize the cost of energy drawn from the grid:

P, (k)AT

5.15
1000 ’ 19

Coart = Z Carll) Lo

where C,;(k) is the electricity unit price time profile (given in EUR/kWh), while the term
P,(k)AT /1000 denotes the grid-supplied charging energy increment in the kth step (expressed in
kWh). The charging optimization relies on the aggregate EV fleet model, and as such it is subject to
the SoE dynamics equation (5.1), and SoE and charging power inequality constraints (5.3) and (5.4).
Additionally, it is required that the final SoE, SoE,,4(N;), is equal to a pre-determined target value

S0Efinq, Which is set to be equal to the initial SoE value, SoE;,;; = SoEq44(0):
S0Efinq = S0Einit,

to satisfy the charge sustaining condition.
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The optimization problem is solved by using the dynamic programming (DP) algorithm proposed in
[13], which provides a globally optimal solution for a general, non-convex optimization problem with
non-convex cost function and constraints. The aforementioned SoE constraints are accounted for
within the DP formulation via soft constraints L(k) added to the cost function (5.15) as:

N¢—1

J= Z Cer(K) gl(ogoT + L(k), (5.16a)
F(k)
L(k) = K;1(S0Eqg4(k + 1) — 1)H(S0E55(k + 1) — 1)
+ K2 (—S0Eqgg(k + 1)) H (=S0Eqgy(k + 1))
n.(k +1)

v

+ Kg,3 (SOEagg (k+1)— ne(k + 1)) (5.16b)

)H <SoEagg (k+1) -
N,
+ Ky 4H (S0Efina — S0Eqgq(k + 1)) H(k — N, + 1),

where the function H(.) represents the Heaviside function defined as: H(z) = 0 for z < 0 and H(z) =
1 for z > 0. Relative importance of the individual terms/constraints are given via related weighting
factors Ky, i = 1,...,4, which are all set to high values to enforce constraint satisfaction if possible. The
physical SoE constraints 0 < SoE,,, < 1 are posed to have the highest priority by setting K, ; =
Ky, = 107, while the remaining weighting factors are set as K;3 =10"and K, , = 108. The aggregate
charging power constraints given by Eq. (5.4) are implemented as hard constraints within the DP
algorithm. Namely, the aggregate charging power F, ,,, is iterated over its predefined discrete values,
from zero until reaching n.(k)Pemaxina OF Fraggmax,» Which results in strict satisfaction of these
constraints.

The DP procedure [13] consists of two distinctive phases: (i) backward-in-time optimization of
charging power to minimize the cost (5.16), and (ii) forward-in-time reconstruction of the optimal SoE
and charging power time profiles SoEg(k) and Pcagg(k), starting from the pre-determined initial SoE
condition SoEqgg(0) = SoE;,;;. Since the DP algorithm requires discrete state and control variables, the
originally continuous variables, SoE,;, and F, ,44, are uniformly quantized into certain number of
discrete values. The phase (i) starts from the last time step N, — 1 and iterates backward-in-time until
reaching the initial time step O (i.e., k ={N,—1,...,1,0}), while minimizing the cumulative cost
function:

Ji(S0Eqgg,) = Pmink{F(SOEagg,k'Pc,agg,k' k) +k+1(S0Eagge+1)} (5.17)
cagg,
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by iterating over discrete aggregate charging power values P g4, . The optimal cumulative cost
function Ji and the related charging power P, ,,, in the ki time step are found and stored for each
discrete value of SoE,,x. The optimal cumulative cost at the (k+1)™ time step, ]k+1(SoEagg’k+1), is
obtained by means of linear interpolation if SoE, .+, falls between two discrete grid values of SoE.
The SoE in (k+1)th step is obtained by the state equation (5.1) in dependence on the current SoE,
S0Eqq44k, and the charging power P, ,44,. The forward-in-time reconstruction is then performed
starting from a pre-defined initial SOE value (SoEq4s(0) = SoC;,,;:), for which the optimal charging power
obtained in the backward phase is restored and applied to the state equation (5.1) to get SoE, 1,
where the linear interpolation is again applied. The forward procedure is iteratively repeated until the
last time step N, — 1.

Apart from the aggregate EV fleet model, the formulated optimization problem given by the cost
function (5.16) and solved by the DP algorithm can also be used for charging optimization of individual
EVs represented by the model (5.5). Namely, SoC,,, from (5.16) is replaced with SoE; for it" EV
charging optimization, N,, is set to 1, and n.,; from (5.6) is used instead of n.. While minimizing the
cost (5.17) in the DP backward-in-time phase, the individual EV charging power is iterated from O
until reaching n¢s ; (k) Pemax.ina (€€ (5.7)). The charging optimization is performed separately for each
individual EV, as the joint DP optimization of all EVs would not be feasible due to the increased
number of state and control variables for the distributed model and consequently prohibitive increase
in computational complexity of the DP algorithm. To provide such a decoupled optimization approach,
the grid power-related upper constraint (5.4b) on the aggregate charging power is omitted. Although
this makes the formulation unrealistic (if the constraint turns out to be violated), the approach can be
used for the purpose of benchmarking the aggregated model-based optimization against the more
direct distributed model-based one (both implemented without the aggregate charging power
constraints).

5.4 Online charging management
5.4.1 Model predictive control

Model predictive control (MPC) is an advanced control technique which combines an optimization-
based open-loop control with a closed-loop feedback control. It effectively handles multi-input/multi-
output (MIMO) systems, where constraints on state and control variables can explicitly be imposed.
MPC is typically executed in a receding horizon manner, while taking into account the current
measured (or estimated) process state variables (feedback part), and solving its optimization problem
(optimal control) in each sampling time step on the prediction horizon. As its name suggests, while
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solving the optimization problem, MPC relies on a model to predict the system (process) behaviour
on the prediction horizon. For full performance, external variables should be predicted, as well, based
on an external/environment model.

The online EV fleet charging management, executed on the aggregated level, as shown in Fig. 37, is
based here on the receding horizon MPC framework (denoted as MPC-REC). The control variable
optimization problem is solved within MPC by using the DP algorithm used in offline optimization
(Subsection 5.3), with the main difference that it is now run online on the receding horizon of length
Np. The sampling time is set to 15 min (AT = 0.25 h), while the prediction horizon is one day (N,= 96
sampling steps). The MPC optimization problem including cost function and constraints is formulated
as (cf. Eq. (5.16)):

Np-1

_ o BGIRAT
J= ) Calill)gra—+ LG, (5.182)
=0 F(jlio

L(jlk) = K1 (S0Eq54( + 11k) — 1)H(S0Eq54G + 1]k) — 1)
+ K2 (—S0Eagg (i + 11k) ) H (=S0Eqge( + 11K))

. n.(j + 11k) .
+ Ky3| S0Eqq4( + 1]k) — N—v H\{S0Eqq4(j + 1]k) —

+ Kg4H (S0Efinat — S0Eagg(j + 1K) ) H(j — Ny + 1),

neG+ 10\ (5.18b)
N,

0= PC,agg(jlk) = nc(jlk)Pcmax,ind' (5.180)
PraggUlk) < P aggmaxs (5.18d)
, _ . . nin(ilk)
S0Eqqq(j + 1|k) = S0E.44(jk) + SoEin’avg(”k)N— —
. v . 5.18e)
o Tou (1K) | PeaggGilAT (
SOEout,avg(/ |k) o + Ncn L;
Nv NvEmax,ind

where k denotes the current simulation time step, and j is the time step on the prediction horizon
(relative to the current step k;j =0, 1,..,N, — 1). The state variable SoEqg4, is predicted on the
horizon by using the prediction model (5.18e), which is set to have the same structure as the
simulation model (5.1). Since the final step is generally outside of the receding horizon, the
requirement on the final SoE is omitted here by setting K;, = 0. As in the case of offline DP
(Subsection 5.3), the aggregate charging power constraints (5.18c) and (5.18d) are implemented as
hard constraints. The DP optimization provides a sequence of optimal aggregate charging power
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values P, 44,(lk) (j = 0,1, ..., N, — 1), and only the first element P, ,,,(0|k) is applied in the current,
kth sampling step, while the remaining ones are discarded.

Another MPC approach considered performs the optimization on a shrinking horizon (denoted as
MPC-DIM), which gradually diminishes as time progresses towards the end time of a day (set typically
in the early morning period where the transport system is typically at rest preparing for the next day).
Thus, the time-varying length of MPC-DIM prediction horizon Ny, 4;,, (k) is set as

Ny aim(k) = N, — k + [ | " ={0,..,N; — 1}, (5.19)

where N, is the fixed horizon length (equal to N,, = 96), and |x] is a mathematical operator providing
an integer counterpart of a real number x. Note that the full prediction horizon of length N, rebuilds

when a new day starts. MPC-DIM relies on the same optimization problem (5.18) as MPC-REC, but
with the final SoE condition included (i.e., K;, = 108 is set in Eq. (5.18b) instead of being equal to

zero), as its final step is now contained in the prediction horizon.

The MPC-DIM approach is deemed as a reasonable alternative option since the fleet driving schedules
are planned offline one day ahead. Apart from that, the MPC-DIM is characterized by an improved
computational efficiency since its prediction horizon length is shorter in average when compared to
MPC-REC, and thus related optimization executes faster.

5.4.2 Preparation of MPC input distributions

The following input time profiles of individual EVs denoted by the subscript i = 1, 2, ..., N,, should be
predicted over the prediction horizon j =0,1,...,N, — 1. n,;(j1k), Noyei (1K), SoEi;(jlk), and
SoEy.:(jlk), to serve as a basis for calculating the following input time profiles of the aggregate
battery model (5.18e) needed for MPC optimization: n;,(j|k), 1yt (j1k), nc(j|k), S0Eiy a1g (j1k), and
S0E oyt avg(J1k). While the arrival and departing times of each EV, n;,;(jlk) and n,,.;(j|k), may be
predicted from the planned driving schedules, the SoE of the arriving EVs, SoE;, ;(j|k), should be
predicted by using a transport energy demand model (below denoted by fs,z(.)).

To maximize the vehicle range and also simplify the energy demand model, it may be assumed that
EV batteries are always fully charged when disconnecting from the grid and departing, i.e.,
S0E, . :(jlk) = 1 when ng,.;(lk) = 1 [12, 13]. However, it may happen that an EV is parked and
connected to the grid for a relatively short amount of time between two driving missions and cannot
be fully charged under present charging power limit of P4, inq. TO satisfy the departure schedule, it
disconnects from the charger before the battery is full, and eventually rely on fast charging on road if
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the energy charged (at depot or e-hub) is not high enough to cover the trip energy demand. Thus,
SoE . ; profiles should carefully be prepared to have the maximal possible values of 1, if possible,
while not violating the individual charging power limit. For this purpose, the distributed model (5.8)-
(5.11), whose equations are rewritten below, is evaluated over the prediction horizon (j = 0,1, ..., N,, —
1; in the recursive sense) for the scheduled profiles n;, ;(j|k) and n,,. ;(j|k), the maximum charging
power Py qx.ind> aNd the known initial conditions: SoE;(0|k), SoE;;, ;(0]k), n;,, ;(0]k), and SoE ;. ;(0|k).

. _ SOEint,i(iIk)r for nout,i(jlk) =0,
SoE(j + 1[k) = { o, om0 = 1 (5.20a)
. . . . . Pcmax indAT
S0Ein:,i(jlk) = min| 1,S0E;(j|k) + S0E ; (k) Nin,: (1K) + Ncn E— ) (5.20Db)
max,ind
0, for n;,;(jlk) =0,
SoE;,;(jlk) = ) ) ) 5.20c
iU = (S0Boues G, i G10)), for muns(71H) = 1, (5200
. SOEouti(ilk)' for nouti(ilk) =0,
SoE,..:(j+1lk) = a . 5.20d
OFours U+ 11k) {SoEim,i(nk), for Mgweg (1K) = 1. (5.200)

Note that the expression (5.20b) effectively saturates SoE to the maximum possible value of 1 if it is
reached prior to vehicle departure (under consistent application of the maximum charging power).
The obtained SoE value at departures is used as the input for the transport demand model f5,z(*) in
Eq. (5.20c) to predict the SoE at arrival (i.e., return to depot) and connections to the grid (when

Nin i (G1k) = 1).

The number of arriving and departing EVs for the aggregate battery prediction model are calculated
by summing up the individual profiles:

Ran (1K) = D ani G110, (5.212)
i=1
oue 1K) = D Mg 7110 (521b)

i=1
Similarly, the aggregate battery SoE time profiles are calculated by averaging the SoE profiles of
individual EVs:

Z?I:vl SoE i (G1k)nm,: (1 k)
Yo in Gl

SOEin,avg(ilk) = ) (5.22a)
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Zi\l:vl SOEout,i(jlk)nout,i(ilk)
202 Mot (1)
The number of EVs parked and connected to the grid within each time step, needed for establishing

the upper power limit (5.4a), is determined from the time profiles of number of arriving and departing
EVs:

SOEout,avg(ilk) = (5.22b)

n( + 11k) = nc (k) + nin(lk) = noue Glk),  j=01,...,N, — 1, (5.23)

where the initial condition n.(0|k) corresponds to the known, current number of connected EVs.
Additional time profiles needed for MPC optimization, are related to the electricity price C,;(j|k) and
the RES power production B..;(j|k), and they should also be predicted, for instance based on
historical data and meteorological forecasts.

5.4.3 Distribution of aggregate charging power to individual vehicles

The aggregate charging power F, ,,,(k), obtained by MPC in the kth time step, should be distributed
to the connected individual EVs. For this purpose, a rule-based algorithm is established which
prioritizes to charge EVs with lower SoE and lower remaining connection times (i.e., sooner
departure). The related procedure, summarized below and formulated in Algorithm 3, is generally
iterative since saturation of individual charging power due to the upper limits (5.11) may inhibit one-
shot aggregate power distribution.

The procedure starts by calculating the lower and upper individual charging power limits, P, i ; (k)
and P, max i (k), where P, .« (k) is given by Eq. (5.11), while P, i, ; (k) is determined according to the
requirement that each EV is targeted to have the maximum possible SoE (equal to 1) each time when
disconnecting from the grid (leading to the maximum vehicle range). More specifically, P, i (k) is
derived from Eq. (5.8b) under the assumption that it" EV will be charged with the maximum power
Pemax,ina from the following (k+1)t time step until the end of connection time ¢, ;.

ncs,i(k)Pc,i(k)AT + (tc,i(k) - ncs,i(k)AT)Pcmax,ind (5_24)

Emax,ind

1 =S0E;(k) + SoE ; (k)n,; (k) + ncp

Eq. (5.24) is solved for P, ;(k) to get the minimum charging power P, (k) in the ki step under
which the ith EV battery can still be fully charged until departure:
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1 (Emax,ind
ncs,i (k)AT Nen

- (tc,i(k) - ncs,i(k)AT)Pcmax,ind>-

P mino,i (k) = (1 — SoE; (k) — SOEin,i(k)nin,i(k))

(5.25)

The upper charging power constraint (5.11) is set to have priority over the lower constraint (5.25),
i.e., the maximum charging power constraint cannot be violated, while the SoE at departure can be
lower than 1 if the battery cannot be fully charged due to short connection/parking time. To this end,
the lower limit P, ,,;, : (k) of each EV is saturated to P, .4, (k) as:

Pc,minO,i(k): for Pc,mino,i(k) < Pc,max,i(k), (5.26)
Pc,max,i(k): for Pc,mino,i(k) > Pc,max,i(k)-

The individual charging power values are then initialized to their lower limit values:

Pc,min,i(k) = {

Pomini(k), for P, pini(k) >0,
p.. _ Vemin,i cmin,i (5.27)
ci(k) { 0, otherwise.
They are rescaled by the factor Pc,agg,max/f.iv:”l P, (k) if their sum exceeds the allowed aggregate

charging power P, 444 max 8iven by Eq. (5.4b) (i.e., if Z'iv;’l P.;(k) > P.q49,max)- The remained aggregate

charging power is then calculated as:
Ny
Pc,agg,r(k) = Pc,agg (k) - Z Pc,i(k): (528)
i=1

which is distributed over individual EVs according to shares p;(k), set to be proportional to the
deviation of corresponding SoE from 1 (i.e., from being fully charged), and inversely proportional to
the remaining connection time t. ; (k):

P, .(k)AT
1 —SoE;(k) — SoE i (l)nin i (k) — nep m (5.29)

tc,i(k)

These shares are calculated only for those EVs connected to the grid, n., ;(k) = 1, for which the

pi(k) =

currently designated charging power values P,;(k) are lower than the related maximum values
P;max,i(k), Pe i (k) < P;max (k) (i.e., those that can still accommodate additional charging power). For
other EVs, they are preset to zero, p;(k) = 0. Then, the calculated shares are normalized:
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Algorithm 3. Algorithm of aggregate charging power distribution over individual EVs.

e Calculate charging power limits Pgmini(k) and Pgmaxi(k) for connected EVs (ng;(k) =1) according
to Egs. (5.26) and (5.11), respectively.

e Set priority to upper power limit: Pc'min_i(k)<—min(PC,min‘i(k),Pc‘max‘i(k)),Vi.
e Set individual charging powers at lower limits (if being larger than zero): Pg(k)«
max (0, [Pt (k)) Vi

Pca max
o If Z?g’ch'i(k)>Pc,agg'max holds, rescale individual charging powers as P ;(k) < P ;(k) =227, to

Ti Pei(k)
satisfy upper constraint on aggregate charging power (5.4Db).
e Calculate remained aggregate charging power: Pc’ugg‘r(k)=Pc,agg(k)—zliv=”1Pc‘i(k).
e Initialize p;(k)=1,Vi.
while Y1, pi(k) # 0 and P gy (k) >0
o Calculate shares p;(k) for all EVs (i = 1,2, .., Ny) by using Eg. (5.29).
Ny, Ny
o Calculate normalized shares: p;(k) = {pi(k)/zi=1 pi(k), for ¥; % p,(.k) = Vi.
0, otherwise.
° Distribute remained charging power Pc,g4,(k) in dependence on p;(k) as:
P;,l(k) = Pc,i(k) + ﬁi(k)Pc,agg,r(k)ﬁ Vi.
° Saturate individual charging powers with respect to their upper limits:
Pc,i(k) = min (Pg,i(k)/ Pc,max,i(k));Vi;
o Update remained aggregate charging power as:
Ny
Pc,agg,r(k) = Pc,agg(k) - ch,i(k)
i=1
end while
Ny
pi(k) :
i 0 i) p (k) >0,
(k) =1 vM L ’ Vi, 5.30
p; (k) P op) & (5.30)
0, otherwise,

and as such they are used for distributing the remained aggregate charging power F, ;4 (k):

Pcl,i(k) = Pc,i(k) + ﬁi(k)Pc,agg,r (k)' Vi. (5313.)

Pe;(k) = min (P (K), Pomazi(K) ), Vi. (5.31b)

Note that P ;(k) determined by Eq. (5.31a) is used to update P, ;(k) in Eq. (5.31b) (as the final control

input over its preliminary value given by Eq. (5.27) and used in (5.31a), see Algorithm 3). The
distribution procedure represented by Egs. (5.28)-(5.31) is iteratively repeated until the remained
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aggregate power P, ;44 (k) given by Eq. (5.28), which is yet to be distributed, is brought to zero, or
all shares p; (k) become zero (Z?’;’l pi(k) = 0in Eq.(5.29), i.e., there are no EVs available for charging).

The presented distribution algorithm can be applied both in an offline and online manner. In the offline
case, the whole aggregate power sequence is obtained offline (e.g., by DP optimization and aggregate
battery model) and then it is distributed over individual EVs step-by-step by using Algorithm 3 (no
feedback present). In the online case, the distribution algorithm is performed after getting the optimal
charging power P, ;,,(0|k) by executing the MPC algorithm in the actual, kth sampling step, and using
it to determine the individual charging power values in the same sampling step employing Algorithm
3 (feedback is present through the MPC path).

5.4.4 Baseline (dumb) charging strategy

A so-called dumb charging strategy is introduced to serve as a baseline for verification of the
developed MPC charging strategy. The idea is to charge the aggregate battery as soon as possible,
without accounting for electricity price or production from RES. The dumb strategy is applied to both
aggregate and distributed models.

For the aggregate model, the aggregate charging power that brings the current aggregate SoE to
SoE;inal (typically set to 1) is calculated by rearranging (5.1) as:
Flagq (k)
SOEfinalnc (k + 1) - SOEagg (k)Nv - SOEin,avg (k)nm(k) + SOEout,avg (k)nout(k) (5.32)
= n hAT Emax,ind
C

This power is then saturated to avoid violation of the aggregate charging power limits defined by
(5.4):

Pc,agg (k) = min(Pc,,agg (k)' min (nc (k)Pcmax,ind' Pc,agg,max) ) (5-33)

By targeting SoEf;,q n.(k +1)/N, as the aggregate Sok value in each time step, dumb charging
strategy achieves SoE,;,(k) = SoEfinq at the end time N, where n.(N,;) = N,. Thus, it should be
directly comparable in terms of charging cost with other charging strategies (e.g., offline DP and
MPCs) by setting them to target the same final SoE (i.e., SoEfinal).

For the distributed model, the dumb charging strategy sets individual charging power values in each
time step k to their maximum values P, . ; (k) given by Eq. (5.11) if not violating the upper limit on
the aggregate charging power given by Eq. (5.4b) (see the first condition below); otherwise, they are
set to values obtained by scaling down P, .y ; (k) in the way that satisfies the aggregate power limit
(second condition below):
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Ny
( Pc,max,i(k)r for ._1PC,max,i(k) < Pc,agg,max
P (k) = Pr aggma - Vi, (5.34)
Pc,max,i(k) N — ) otherwise.
Zi:1 Pc,max,i(k)

5.5 Case study
5.5.1 Parametrization of EV fleet models

EV fleet models described in Subsection 5.2 are parameterized by using the data recorded for a
delivery vehicle fleet of a local retail company [14]. The data were recorded on ten mid-size Diesel
engine-propelled delivery trucks by using GPS/GPRS equipment over a three-month period. The
vehicles mission was to deliver cargo from a distribution centre (a depot; DC) to different sales
centres. These trucks were virtually converted to extended range electric vehicles (EREV) with similar
power and torque characteristics as in the real trucks [15, 20]. EREVs (denoted as EVs hereafter for
the sake of brevity) were used instead of pure battery electric vehicles (BEV) to overcome limited
range of BEVs, i.e., to be able to cover all recorded driving missions (both short- and long-distance
ones). It was assumed that their charging could take place only at the DC during their parking periods
between two driving missions. Thus, the recorded GPS positions were used to detect time periods
when vehicles had been located within the DC and thus hypothetically connected to the grid and
available for charging. From this data, the following time profiles of EV fleet models from Subsection
5.1 could be derived: ny,, noyue, Ny Nep is Nes.ir Ninis Nout,i» Where i = 1,2, ..., Ny,

The above-described setup has been adopted for the case study presented herein, with the following
notes: (i) a one week period is selected out of the total three-month period, and (ii) the time
discretization is reduced from 1 h to 15 minutes, i.e., AT = 0.25 h. To ensure that each day starts and
ends with all vehicles being parked within the DC, the week is set to start at 5 a.m. of the first
recording day. This is illustrated by the time profile of the number of vehicles within the DC, n.(t),
shown in in Fig. 38, which is determined from n;, (k) and n,,.(k) (in the same way as defined by Eq.
(5.23) for the MPC horizon):

ne(k + 1) = n.(k) + nyp (k) — noye (k), k=01,..,N.—1,n.(0) =N,. (5.35)

The profiles shown in Fig. 38 reveal a repetitive fleet activity over workdays (from Monday to Friday)
with the peak activity occurring around 10 a.m., and the reduced activity appearing over weekend
days (Saturday and Sunday).
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Fig. 38 Time profiles of aggregate EV fleet model related to number of connected EV's (n.), number of
arriving EVs (nin), and number of departing EV's (n.ut) over a one-week period (total number of EV's within
fleet is 10, Ny = 10)

The backward-looking type of EREV model given in series configuration is shown in Fig. 39 (see [20]
and [15] for more details). The main propulsion comes from the bigger electric machine (denoted as
Motor), while the internal-combustion engine drives the generator to sustain the battery SoC to its
lower limit value, thus providing the vehicle range extension. The battery capacity is set to 72.67
kWh. The control strategy is assumed to operate in the so-called CD/CS (Charge Depleting/Charge
Sustaining) regime, where CD corresponds to pure electric driving (i.e., w, = 0 and 7, = 0), while CS
relates to hybrid driving. The control in CS regime is based on an equivalent consumption minimization
strategy (ECMS), which sets the engine operating point, w, and 7., to minimize an equivalent fuel
consumption cost.

The recorded driving cycles are divided into ten groups with respect to their travelled distance, and
for each group one statistically representative synthetic driving cycle is generated by using Markov
chain methodology [14]. The EREV model is simulated over each synthetic driving cycle for nine
different initial battery state-of-charge (SoC) values, SoC,,,; = {0.2,0.3, ...,1}, resulting in a grid (10x9)
of SoC-at-destination (SoC;;,) and fuel consumption (V) values shown in Fig. 40. Note that the
simulation model concerns a more accurate vehicle battery model expressed in SoC rather than SoE
state variable, while the optimization and control algorithms are based on SoE state equations, where
the SoE is equalized with the SoC when parameterizing the vehicle energy demand model for
optimization/control. Note also that SoC;,, ends up around 0.3 for larger travelled distances and/or
lower initial SoCs, which corresponds to lower limit of SoC sustained within the CS regime.
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Fig. 39 Block diagram of backward-looking model of Extended Range Electric Vehicle (EREV)
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Fig. 40 Response surface-based transport demand model providing SoC-at-destination (SoCin) when
arriving to DC (a), and fuel consumption (Vel) of related driving mission of length d

The SoE time profiles of individual EVs, SoE;, ;(k) and SoE,,; ;(k), are derived by using the transport
demand model from Fig. 40 and the expressions (5.20). According to Eq. (5.20), SoE of departing EVs,
SoEyy. i, is set to 1 whenever it is possible if it is not limited by the individual charging power limit.

The average SoE profiles of departing and arriving EVs, required by the aggregate battery model, are
calculated from individual profiles by using Eq. (5.22) and they are shown in Fig. 41.
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Fig. 41 Average SoE of EVs departing from DC (S0E ¢ qvg) and arriving to DC (SoE;, 4,,4)

The two-tariff electricity price model present in Croatia is represented by the plot shown in Fig. 42.
The RES power time-profile shown in Fig. 43 relates to power production from solar panels
hypothetically installed on the DC roofs. It was obtained from irradiation of global radiation (kW/m?)
taken from Meteonorm software for the particular location of DC, which is multiplied by the assumed
solar panel surface equal to 2000 m? [20].
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Fig. 42 Time profile of two-tariff electricity price over one-week period (vertical dashed lines denote
boundaries between days starting at 5 a.m.)
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Fig. 43 Time profile of hypothetical power production from solar panels over one-week period

The remaining EV fleet model and simulation parameters are set to: AT = 0.25h, N, = 96, N, = 10,
Emaxina = 72.67 kWh, n., = 0.92, SoEfinal = 0.95, P aggmax = 150 kW, Ny = 672, Pepax,ing = 25 kKW.

To solve the DP optimization problem for the case of the aggregate battery model, the aggregate SoE
and charging power are quantized as SoE,,, € {0,0.01,..,1} and P 4, €{0,2,...,150} kW,
respectively (see Subsection 5.3). In the case of separate DP optimizations for individual EVs, these
quantization levels are set to: SoE, 4,4 € {0,0.01,...,1} and P, 44,4 € {0,0.5, ..., 25} kW.

5.5.2 Results for case of no RES consideration

Firstly, the aggregate battery model (5.1)-(5.4) is used as an EV fleet simulation model for conducting
the offline DP optimization and testing the online MPC charging strategies in the case of no electric
power production from RES (see Fig. 44 for illustration of the latter). The MPC charging on receding
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horizon is denoted as MPC-REC, while the one related to diminishing horizon is referred to as MPC-
DIM. The offline DP and the baseline (dumb) charging strategy relying on Eq. (5.33) are denoted as
DP-OFF and DUMB, respectively.

As MPC-REC does not have requirement on SoE at the end of prediction horizon, it is switched to
MPC-DIM when its prediction horizon reaches the end of simulation time (i.e., when reaching the last
day of a week), to force SoE to reach the same final target value of 0.95 as in the case of other
charging optimization/strategies, and thus facilitate comparative analyses.

MPC-BASED CHARGING OPTIMIZATION

y

Pc,agg(0|k) v SOEagg(k)

EV FLEET AGGREGATE MODEL
(5.1)-(5.4)

Fig. 44 Online MPC applied to aggregate EV fleet simulation model

Figs. 45 and 46 show the obtained aggregate SoE and charging power profiles, which reveal that
MPC-REC profiles closely align with those of the DP-OFF benchmark. MPC-DIM provides somewhat
different profiles, which is because its formulation includes the constraint on final SoE at the end of
each day to be equal to 0.95, which is not present in MPC-REC and DP-OFF. However, those
differences in time profiles do not cause any notable difference in charging costs of DP-OFF, MPC-
REC, and MPC-DIM, as evidenced in Table 13. Note also that all approaches provide the same fuel
consumption calculated according to the map from Fig. 40b, which is dictated by the same SoE time
profiles, S0Cinavg and SoCout.avs, used in the aggregate model.

The DUMB charging approach brings the SoE very close to its upper limit, which is due to charging
with the maximum power possible (see Subsection 5.4). Unawareness of electricity price is reflected
in relatively high charging power levels in the periods of high electricity cost, which results in
approximately 20% higher charging cost when compared to other approaches (Table 13).
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Fig. 45 Aggregate SoE obtained by different charging approaches applied to aggregate battery model,
with lower plot representing a zoom-in section of upper plot related to first day profiles

Table 13 Optimization and simulation results obtained for case of aggregate model and no RES

considered

rﬁigﬁggﬁi Initial Final Fuel Total charging Total cost of
weék SoC|[-] | SoC[-] | consumption [L] | energy [kWh] | charging [EUR]

DP-OFF 0.95 0.95 6935.0 (0.0%) 515.4 (0.0%)
DUMB 0.95 0.95 6935.0 (0.0%) | 617.6 (+19.8%)

4259.8
MPC-REC 0.95 0.95 6935.0 (0.0%) 515.4 (0.0%)
MPC-DIM 0.95 0.95 6935.0 (0.0%) 515.4 (0.0%)
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Fig. 46 Aggregate charging power obtained by different charging approaches applied to aggregate battery
model, with lower plot representing a zoom-in section of upper plot related to first day profiles

Furthermore, the considered charging approaches have been tested on the distributed vehicle fleet
model (5.8)-(5.11). The DP-OFF aggregate charging power profile is distributed over individual EVs
by using the distribution algorithm (Algorithm 3 in Subsection 5.4), while DUMB charging is applied
directly on the distributed model based on charging power values calculated by Eq. (5.34). Both MPC-
REC and MPC-DIM are applied in an online manner while simulating the fleet distributed model, i.e.,
in each time step the DP optimization is conducted on the prediction horizon by using the aggregate
model and the obtained aggregate charging power in the actual time step is distributed over individual
EVs by the distribution algorithm (see Fig. 47).

Fig. 48 shows the aggregate SoE and charging power time profiles obtained by DP-OFF prior and
after performing distribution, where it can be observed that the distribution does not perturb the
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aggregate charging power profile significantly. This is confirmed by a relatively high correlation index
of the two power profiles equal to 0.78 (correlation index of SoE profiles is equal to 0.91; its ideal

value is 1 on the range [0,1]).

MPC-BASED CHARGING OPTIMIZATION

F \
P age(0]k) il SOE oK)
AGGREGATE CHARGING AGGREGATING
POWER DISTRIBUTION INDIVIDUAL SoE VALUES
P.{k) i S()E,-(k)t

EV FLEET DISTRIBUTED MODEL (5.8)-(5.11)

Fig. 47 Online MPC applied to distributed EV fleet simulation model

T 1 1 1
1.2~ ‘—Upper constraint Distributed model = = —Aggregate model| |

SoE
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t[-]

Fig. 48 Comparative plots of aggregate SoE and charging power profiles obtained directly by DP-OFF
(blue) and after applying distribution algorithm and aggregating resulting profiles (red)
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The first row of Table 14 shows comparative DP optimization results for the cases of using the
aggregate model (AGG) and distributing the aggregate charging power over individual EVs (DISTR).
These results indicate that distributing of the aggregate power typically results in higher charging
costs (by 10%), with negligible reduction of total charging energy (1.5%) and related increase in total
fuel consumption (0.2%). MPC-DIM in the case of distributed model ends up with the final SoE at the
target value of 0.95 due to its online execution and related feedback effects, which is not the case
with DP-OFF-DISTR as its charging power is distributed offline, i.e., in an open-loop manner. Certain
differences between the aggregate and distributed models is primarily manifested in charging costs,
and they can be attributed to inaccuracies of the aggregate battery model, which cannot fully capture
distributed model dynamics.

Table 14 Comparative performance metrics related to results obtained by using aggregate model and
distributed model (no RES considered)

One week EV fleet Initial Final Total fuel Total charging Total cost of
period model SoE [-] | SoE[-] | consumption [L] energy [kWh] charging [EUR]
AGG 0.95 0.95 4259.8 (0.0%) 6935.0 (0.0%) 515.4 (0.0%)
DP-OFF
DISTR 0.95 0.85 4266.6 (+0.2%) 6830.6 (-1.5%) 565.3 (+9.7%)
AGG 0.95 0.95 4259.8 (0.0%) 6935.0 (0.0%) 617.6 (0.0%)
DUMB
DISTR 0.95 0.96 4273.4 (+0.3%) 6894.0 (-0.6%) 605.1 (-2.0%)
AGG 0.95 0.95 4259.8 (0.0%) 6935.0 (0.0%) 515.4 (0.0%)
MPC-REC
DISTR 0.95 0.95 4267.8 (+0.2%) 6906.1 (-0.4%) 564.1 (+9.5%)
AGG 0.95 0.95 4259.8 (0.0%) 6935.0 (0.0%) 515.4 (0.0%)
MPC-DIM
DISTR 0.95 0.95 4267.8 (+0.2%) 6906.1 (-0.4%) 550.6 (+6.8%)

The DP optimizations are then performed for each EV separately by using the model (5.5)-(5.7), to set
a benchmark on the distributed level. The related results are denoted below by the acronym DP-IND.
Fig. 49 shows the optimal SoE and charging power profiles for EV #1. It may be observed that SoE
increases almost to the upper limit of 1 if the parking period (ns =1) is long enough (red line in Fig.
49). On the contrary, if this interval is short, the battery is just a partially charged (SoE < 1) even
though the maximum charging power is applied (see for instance SoE values and charging power when
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departing from DC around 40t hour). It should be recalled that the upper limit on the aggregate
charging power, given by Eqg. (5.4b), is not included here to make the distributed system optimization
feasible (see Subsection 5.4), and the obtained results may be somewhat overoptimistic for that
reason (due to less constraints involved). However, the aggregate charging power profile obtained
from individual profiles by using Eq. (5.13) and shown in Fig. 50 reveals that this violation turns out
to occur only in several time steps (out of 672). For that reason, these results may be considered as
the (nearly) globally optimal benchmark on the distributed level in the selected settings of the
maximum aggregate charging power.
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Fig. 49 DP optimized time profiles of SoE and charging power for EV #1 (upper constraint corresponds to
ncb from Eq. (5.6))
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Fig. 50 Aggregate charging power obtained by DP optimization of individual vehicle profiles and
aggregating them by using (5.13) (no RES considered; red circles denote points where aggregate charging
power exceeds imposed maximum grid power of 150 kW)

Table 15 provides the DP results for each EV separately and the corresponding lump sum results. The
lump sum results from Table 15 are included in Table 16 along with the results related to other
charging approaches. All methods have very similar fuel consumptions and cumulative charging
energies, thus making their charging costs directly comparable. The charging costs of DP-OFF and
MPC-REC turns out to be only up to 2% higher than the DP-IND costs, while that of MPC-DIM is
even 0.8% lower, confirming that they are all close to the feasible global optimum, despite the fact
that they significantly lag the charging costs obtained when applied at the aggregate battery model
level (Table 14). On the other hand, when applying DUMB charging, the charging cost becomes higher
than the DP-IND cost by 9%. The fact that MPC-DIM provides even lower cost than DP-IND indicates
that there is still some room for improvement of DP-IND charging results via using finer quantization
of SoE and charging power within DP optimization.
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Table 15 Optimization results for each EV obtained by separate DP optimizations (DP-IND; no RES
considered)

EV # Initial Final Fuel Total charging | Total cost of
SoC[-] | SoC[-] | consumption[L] | energy [KWh] | charging [EUR]
1 0.95 0.95 839.4 6884.4 51.9
2 0.95 0.95 303.0 738.6 57.7
3 0.95 0.95 479.6 832.4 65.9
4 0.95 0.95 391.7 813.9 65.5
5 0.95 0.95 518.9 617.0 49.8
6 0.95 0.95 305.2 568.1 46.8
7 0.95 0.95 201.6 583.6 52.1
8 0.95 0.31 587.3 767.0 59.5
9 0.95 0.95 454.0 888.5 68.5
10 0.95 0.95 179.3 446.0 37.2
)3 9.50 8.86 4260.0 6884.4 554.9

Table 16 Comparative performance metrics related to results obtained by applying different approaches
to distributed model (no RES included)

One week period, Total fuel Total charging Total cost of Specific cost of
DISTR model consumption [L] energy [kWh] charging [EUR] | charging [EUR/kWHh]
DP-IND 4260.0 (0.0%) 6884.4 (0.0%) 554.9 (0.0%) 0.0806 (0.0%)
DP-OFF 4266.6 (+0.2%) 6830.6 (-0.8%) 565.3 (+1.9%) 0.0828 (+2.7%)
DUMB 4273.4 (+0.3%) 6894.0 (+0.1%) 605.1 (+9.1%) 0.0878 (+8.9%)
MPC-REC 4267.8 (+0.2%) 6906.1 (+0.3%) 564.1 (+1.7%) 0.0817 (+1.4%)
MPC-DIM 4267.8 (+0.2%) 6906.1 (+0.3%) 550.6 (-0.8%) 0.0797 (-1.1%)
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5.5.3 Results for case of RES consideration

When including the power production from RES, the DP-OFF optimization tends to shift charging
closer to solar noon where the RES production is around its peak (see Fig. 51). It is interesting to note
that the (aggregate) battery is not fully charged at 5 a.m. unlike the case when no RES production is
included. This can be explained by the fact that the optimizer leaves the battery at lower SoE value
to charge it when RES power is available (note that the local-RES power price is set to zero).

Table 17 gives the charging results for the case of aggregate model (see Fig. 44), where it can be
observed that the cost of DUMB approach, and even MPC-DIM, is now multiple times higher than
that of DP-OFF. MPC-DIM performs much worse than in the case when no RES was included (cf.
Table 13) because of the requirement on the SoE to be equal 0.95 at 5 a.m. of each day, which
significantly limits the optimisation freedom in the presence of RES charging potential later in the day.
Since MPC-REC does not involve this constraint, its performance does not degrade; in fact, it provides
(almost) the same results as DP-OFF.

Table 18 gives comparative results obtained by applying different charging methods for the cases of
using aggregate (AGG) and distributed model (DISTR). The fuel consumptions and charging energies
are similar in all cases, while the increase in the charging cost when the distributed model is used is
more pronounced than in the case of no RES considered (cf. Tables 18 and 14). The only exception is
DUMB strategy, whose charging cost is very similar in the case of both scenarios, but it is very high
when compared to other charging methods (see also Table 20). These results can be explained by the
fact that the relatively narrow RES power production peaks mostly occur around the hours of elevated
EVs activity (cf. Figs. 38 and 43), i.e., when EVs are typically less available for charging. For this reason,
perturbation of charging power profiles, caused by aggregate charging power distribution to
individual EVs, results in decrease of employed RES energy and leads to significantly increased costs.

Table 17 Optimization and simulation results obtained for case of aggregate model and RES considered

Aggregate model, Initial Final Fuel Total charging | Total cost of
one week SoC[-] | SoC[-] | consumption[L] | energy [KWh] | charging [EUR]
DP-OFF 0.95 0.95 6935.0 (0.0%) 99.0 (0.0%)
DUMB 0.95 0.95 6935.0 (0.0%) 324.4 (+228)
4259.8
MPC-REC 0.95 0.95 6935.0 (0.0%) 99.0 (0.0%)
MPC-DIM 0.95 0.95 6935.0 (0.0%) | 244.5 (+147%)
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Fig. 51 Comparative DP-OFF optimization results for the cases with and without RES production
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Table 18 Comparative performance metrics related to results obtained by using aggregate model and
distributed model (RES is considered)

One week EV fleet Initial Final Total fuel Total charging Total cost of
period model SoC[-] | SoC[-] | consumption [L] energy [kWh] charging [EUR]
AGG 0.95 0.95 4259.8 (0.0%) 6935.0 (0.0%) 99.0 (0.0%)
DP-OFF

DISTR 0.95 0.85 4262.4 (+0.1%) 6845.5 (-1.3%) 193.2 (+95.2%)

AGG 0.95 0.95 4259.8 (0.0%) 6935.0 (0.0%) 324.4 (0.0%)
DUMB

DISTR 0.95 0.96 4273.4 (+0.3%) 6894.0 (-0.6%) 321.1 (-1.0%)

AGG 0.95 0.95 4259.8 (0.0%) 6935.0 (0.0%) 99.0 (0.0%)
MPC-REC

DISTR 0.95 0.95 | 42624 (+0.06%) | 6925.6(-0.1%) | 176.1 (+77.9%)

AGG 0.95 0.95 4259.8 (0.0%) 6935.0 (0.0%) 244.5 (0.0%)
MPC-DIM

DISTR 0.95 0.95 4262.4 (+0.1%) 6925.6 (-0.1%) | 276.8 (+13.2%)

Similarly, as in the case of not using RES, the charging optimization of individual EVs is performed by
DP and the distributed model (5.5) (again, denoted as DP-IND), to establish a kind of direct
benchmark. The results are presented in Table 19. Implications of not using joint constraint (5.4b) on
the aggregate charging power become more pronounced in the no-RES case due to neglecting RES
power profile as a shared resource of all EVs (i.e., each EV is set to have the whole RES power profile
at its disposal, which is not realistic). The aggregate charging power (Fig. 52), obtained through
aggregation of the individual DP-IND profiles, indicates that the aggregate charging power limit (5.4b)
is now violated in more time steps than in the case of not using RES (cf. Fig. 50). Nevertheless, the
DP-IND results still provide certain orientation on the globally optimal charging cost, and they are,
thus, further used in the comparative analyses.
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Table 19 Optimization results for each EV obtained by separate DP optimizations (DP-IND; RES is

considered)

EV # Initial Final Fuel Total charging | Total cost of
SoC[-] | SoC[-] | consumption[L] | energy [KWh] | charging [EUR]
1 0.95 0.95 839.4 629.3 10.3
2 0.95 0.95 303.0 738.7 24.9
3 0.95 0.95 479.6 832.4 29.6
4 0.95 0.95 391.7 813.9 26.3
5 0.95 0.95 518.9 617.1 12.2
6 0.95 0.95 305.2 568.2 6.1
7 0.95 0.95 201.6 583.7 134
8 0.95 0.31 587.3 767.0 28.2
9 0.95 0.95 454.0 888.5 27.9
10 0.95 0.95 179.3 446.1 5.1
)3 9.50 88.6 4260.0 6884.9 184.0
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Fig. 52 Aggregate charging power obtained by DP optimization of individual profiles and aggregating
them by using Eq. (5.13) for case of RES included (red circles denote points where aggregate charging
power exceeds imposed maximum grid power of 150 kW)
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The aggregated DP-IND results from Table 19 are used in Table 20 as the benchmark for other
charging methods applied on the same distributed model (the results taken from Table 18). The DP-
OFF approach gives around 6% higher charging cost than the DP-IND one, which may be attributed
to the more constrained optimization in the case of DP-OFF and the suboptimality of the distribution
algorithm. MPC-DIM and DUMB methods have again very high charging costs, which is due to the
requirement on the final SoE set for each day in the former case, and the algorithm insufficiency (in
terms of not reflecting the RES potential) in the latter case. The MPC-REC strategy does not involve
the final SoE condition and, thus, significantly outperforms the MPC-DIM method. Furthermore, by
incorporating feedback via its online execution, it mitigates the aggregate model deficiencies and,
thus, achieves lower cost when compared to DP-OFF method, whose aggregate charging power
distribution is performed offline. The fact that MPC-REC, actually, provides 5% lower charging cost
when compared to DP-IND again indicates certain room for improvement of DP-IND results via finer
guantization of SoE and charging power. Indeed, reducing the quantization step of charging power
Pcifrom 500 W to 100 W turns out to result in 4.7% cost reduction (from 184.0 to 175.3 EUR), which
is now slightly lower than MPC-REC cost.

Table 20 Comparative performance metrics related to results obtained by applying different approaches
to distributed model (RES is included)

One week period, Total fuel Total charging Total cost of Specific cost of
DISTR model consumption [L] energy [kWh] charging [EUR] | charging [EUR/kWHh]
DP-IND 4260.0 (+0.0%) | 6884.9 (+0.0%) 184.0 (+0.0%) 0.0267 (+0.0%)
DP-OFF 4262.4 (+0.1%) 6845.5 (-0.6%) 193.2 (+5.0%) 0.0282 (+5.6%)
DUMB 4273.4 (+0.3%) | 6894.0 (+0.1%) | 321.1 (+74.5%) 0.0466 (+74.5%)
MPC-REC 4262.4 (+0.1%) | 6925.6 (+0.6%) 176.1 (-4.3%) 0.0254 (-4.9%)
MPC-DIM 4262.4 (+0.1%) | 6925.6 (+0.6%) | 276.8 (+50.4%) 0.0400 (+49.8%)

5.6 Short conclusion

An offline optimization tool for EV fleet charging has been first developed based on the dynamic
programming (DP) algorithm to set a performance benchmark. An online hierarchical EV charging
management method has then been proposed to optimize the aggregate charging power profile by
means of a model predictive control (MPC) algorithm and distribute this profile over individual EVs
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by using a heuristic allocation algorithm based on charging priorities. The main benefit of the proposed
method is that it can be applied to large-size EV fleets, while providing a nearly optimal solution.

The effectiveness of the proposed charging method has been demonstrated through a delivery
electric vehicle fleet study, where a Extended Range Electric Vehicle (EREV) is concerned, as it can
cover all driving missions involved (short- and long-distance ones). It has been demonstrated that
both MPC strategies considered (with receding horizon and shrinking horizon) provide almost the
same results on the aggregate battery level when compared to the offline DP benchmark for the case
of no power production from renewable energy sources (RES), while the cost is around 17% lower
when compared to the baseline (dumb) strategy involving charging EV fleet with a maximum power
when possible. When used in combination with the heuristic allocation algorithm within the more
realistic distributed vehicle fleet model, both MPC strategies result in charging costs that are close to
the DP benchmark obtained on the distributed EV fleet model. At the same time, unlike the offline-
applied (open-loop) distribution algorithm, the MPC strategies satisfy the target aggregate battery
state-of-energy (SoE) owing to its feedback control character. When including the production from
RES, the MPC variant based on receding horizon optimization overperforms its shrinking-horizon
counterpart by the large margin. This is because the latter is overly restricted by the battery SoE
constraint at the end of diminishing horizon for each operating day, thus not allowing for full
exploitation of the RES potential.

In the remaining course of WP2.1 activity, the developed receding horizon-based MPC strategy will
be accommodated and demonstrated within the airport e-hub planning case study.

6 E-bus scheduling optimization
6.1 Introduction

Solving an electric bus scheduling problem yields optimal scheduling of electric buses to minimize the
fleet size (i.e., the total number of e-buses), while satisfying the predetermined service trips and
timetables, and accounting for the e-bus range and charging restrictions. The scheduling involves
optimal allocation of electric buses to service trips and the determination of when and where each
bus should be charged.

This section presents a thorough approach to e-bus scheduling optimization, which results in a Pareto
frontier in two conflicting criteria being minimized: (i) the total number of buses required to serve the
predetermined routes and (ii) the excess of distance travelled (so-called deadhead distance). These
criteria reflect the city bus fleet investment and operational costs, respectively. The optimization
strategy is executed in two phases: 1) finding the minimal number of buses, and 2) gradually
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incrementing the number of buses from the minimal one and minimizing the deadhead distance. Two
optimization methods are proposed: mixed integer linear programming (MILP) and genetic algorithm
(GA), where the former provides the optimal solution but it is limited to small-scale problems (fleets),
while the latter can deal with large fleets but generally results in a nearly optimal solution. The
underlying MILP formulation has been adopted from [16], and then extended by adding constraints
to ensure the buses are fully charged by the end of each day (charge sustaining condition), while
locally considering the state of energy for each bus, the rated power of individual chargers, and the
specific number of buses that can be charged at each station, thus underscoring the non-uniformity
across buses and chargers. The optimization approach is demonstrated on a custom-generated
dataset reflecting characteristics of real-world city bus transport systems and is implemented in
Python programming language.

The subsequent subsections are organized as follows. Subsection 6.1 introduces the e-bus scheduling
framework and formally defines the scheduling problem. Subsection 6.2 presents the MILP
formulation, while Subsection 6.3 explores the GA approach. Subsection 6.4 discusses the
optimization results and compares the MILP and GA results. Concluding remarks are given in
Subsection 6.5.

Note: The work presented in this section has been disseminated through the following conference
papers, which also include a methodology state-of-the-art review and elaborates on the contributions
of the approach proposed:

Z. Dabéevi¢, B. Skugor, J. Deur, “Pareto Optimization of Electric City Bus Scheduling”, 18t Conference on
Sustainable Development of Energy, Water and Environment Systems (SDEWES), Dubrovnik, Croatia,
2023.

6.2 Problem definition
6.2.1 Electric city bus scheduling framework

Electric bus scheduling poses several challenges, particularly when buses operate on partial charges
and require charging at both main depots and designated route stops (end stations). Moreover,
different charging stations can have different values of (i) maximum charging power and (ii) capacities
to handle buses simultaneously. A general case of uninterrupted, full day operation satisfying the
charging sustaining condition is concerned, as opposed to special cases based on, for instance,
operation pauses for depot slow charging during night. It is assumed that the bus lines, timetables,
location of charging stations and the number of charging spots per charger are predetermined.
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Fig. 53 illustrates the developed e-bus scheduling optimization process, which starts by minimizing
the number of electric buses needed to satisfy the predetermined timetables. The minimum fleet size
is typically associated with a long deadhead distance, i.e. the total distance travelled by empty buses
to switch between different lines (i.e., their end stations) to serve them and/or recharge on their
charging stations. In other words, the minimum bus fleet investment cost is compromised by a higher
operating cost (e.g., higher energy and maintenance costs). In order to obtain a set of optimal solutions
in both criteria, i.e. to generate a Pareto frontier, the number of buses is incremented by one and a
deadhead minimization problem is solved. The process continues until the deadhead distance
saturates to its minimum value.
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Fig. 53 Flowchart of e-bus scheduling sequential optimization process

When optimizing the schedule, it is imperative to address both conventional scheduling constraints
and those that are unique to electric vehicles. The conventional constraints encompass the following:
1. Every service trip is allocated to only one vehicle.
2. Each vehicle follows a feasible sequence of service trips, meaning the order and arrangement
of trips for each vehicle must be logical and achievable within given time frames and
operational conditions.

Electric vehicles bring additional constraints related to battery state-of-energy (SoE) limits:

1. The SoE must be high enough to complete the service trip or reach the nearest depot or
charging station.
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2. Buses can be recharged only at specific, predetermined charging station locations, and the
battery cannot exceed its maximum value.

3. Only a limited number of buses can be recharged at a charging station at the same time
(depending on the predetermined number of charging spots).

4. Each bus must finish its day with a fully charged battery, i.e. the final SoE must be equal to the
initial SoE assumed to be at the maximum level (charge sustaining condition).

6.2.2 Formal problem formulation

Let N represent the set of service trips awaiting for scheduling, and let K represent the set of available
vehicles, where every vehicle k € K carries a battery defined by its minimal and maximal SoE, SoE¥ .,
and SoEk ., respectively. For optimization to yield a feasible solution, the initial set of vehicles K
should be set at a sufficiently high level. Distinct from the set N there are two specific points: D, and
D,.. D, marks the depot starting position where vehicles initiate their routes, while D,, indicates the
concluding point where vehicles conclude their service trips and revert to the depot. Each service trip,
denoted by index i in the set N, possesses the following distinct attributes:

e starting time: s;,

e duration: t;,

e energy required: c;,

e starting S; and end location E;.

Moreover, each trip i has a defined set of feasible succeeding service trips, F (i), where a service trip
j is deemed to feasibly succeed a service trip i if the condition s; + t; +t;; < s; is satisfied. Here, ¢;;
marks the time needed to transit from the endpoint of trip i to the starting point of trip j, while the
energy consumed during this transit period is quantified by c;;. A symmetrical set, B(i), lists trips j
that can precede trip i: s; + t; + t;; < s;.

Additionally, a set R encompasses all charging stations. Each charging station r € R, is distinguished
by:

e Its location: situated either at starting or end stations of trips (S;, E;) or at the depot (D, D,,),

e Charging power g,: (in Wh/per unit time) at which an electric bus is recharged,

e Charging spot capacity N,: maximum number of buses that a charging station can handle at
once, based on the available charging spots.

The constants ¢;,. and t,; stand for the time required to move from the end of a service trip i to a

charger r and from the charger r to the service trip j, respectively. The energy costs associated with
these routes are denoted by ¢;,- and ¢,.;.
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Furthermore, each charger r possesses a charging event set, T", equivalent in count to the number of
service trips. These charging events effectively provide a time discretization of the transport system
by marking potential start or end times for charging. Specifically, the beginning time s,., for charging
event t from service trip i is defined as s, = s; +t; + t;, where charging events are organized
chronologically by start times for each charger.

Moreover, to enhance optimization efficiency, service trips are aligned with charging events. To
capture these relationships, specific sets are defined for each charger r € R, each charging event t €
T™ on charger r, and each service tripi € N:

e F.(r,i) represents charging events that are initiated after the trip i has reached the charger r:
Sre 2 Si H 1t + by,

e B.(r,i) denotes charging events that occur before the trip i reaches the charger r,

e F;(r,t) indicates trips starting after the charging event t: s; > s, + t;;,

e B;(r,t) captures trips ending before the charging event t at the charger r.

Based on the above foundational elements, several decision variables to be optimized have been
introduced in the system:

. x{‘j: Binary decision variable indicating whether the service trip j € N succeeds the service trip
i € N using the vehicle k € K, valid only if j € F(i).

e yk.:Binary decision variable determining if the vehicle k € K recharges at the eventt € T” on
the charger spot r € R after completing the service trip i € N.

. zftj: Binary decision variable marking if the vehicle k € K undertakes the service trip j € N after
charging at the event t € T" on the charger r € R.

e wk: Binary decision variable signifying if the vehicle k € K continues charging at the
subsequent event t + 1 € T" on the charger r € R after charging at charging event t € T" on
the same charger.

Fig. 54 visualizes the role of above decision variables and the overall scheduling mechanism.
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Fig. 54 Visualization of vehicle scheduling problem formulation
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The battery SoE of k" bus is defined by variables e and £¥,.. The variable e signifies the battery SoE
of the bus just before starting service trip i € N, ensuring the bus has enough charge for the trip. On
the other hand, X represents the battery SoE before it begins charging at event t € T™ on charger
r € R. This not only indicates the battery depletion level but also, when compared to SoE upper limit
SoEE .., helps determine the necessary charging amount and duration.

6.3 Mixed-integer linear programming formulation

By utilizing mathematical optimization based on the Mixed Integer Linear Programming (MILP)
algorithm, a structured approach for solving the bus scheduling problem defined in Subsection 6.2
and Fig. 54 is proposed, which yields Pareto optimal solution in terms of minimization of the total
number of buses and the deadhead distance. MILP solvers inherently possess certain capabilities,
which include achieving optimal solution, ensuring solution convergence, and terminating
automatically if they cannot satisfy the constraints [17]. In this study, the coin-or branch and cut
solver, accessible via the PuLP library in Python is utilized to solve the MILP formulation.

6.3.1 Objective functions

To optimize the fleet usage while meeting the service demands, it is first aimed to minimize the
number of electric buses deployed (see the second block in Fig. 53). The total number of buses in the
system is determined by those dispatched from the depot, from which the buses are assumed to be
exclusively launched (this does not restrict buses from shifting between lines). Therefore, the
corresponding objective function counts all the trips j of buses k from the depot D,, and is formulated

as:
: K
min ), ) 4y 6

kEK jEN
The second objective relates to minimization of the total deadhead distance (see the third block in
Fig. 53), which sums the distances the buses travel outside of regular service. More specifically, they
include the distance for line switching between consecutive service trips i and j (d;;), the distance to
access a charger r from an ith service trip endpoint (d;,), and the distance from charger r to the next
service trip j (d,;) after charging is complete:

minz 2 Z dijxlkj + Z Z 2 diyiie + Z Z Z Z drjzftj' (6.2)

kEK ieN jeF(i) KEK €N teF.(r,i) kEK T€R ter jEF (r,b)
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6.3.2 Vehicle scheduling constraints

To ensure that each service trip is served only by one bus, the following constraint is set:

Z foj+zz z thj=1;VjEN. (6.3)

keK i€B()) k€K T€R teB.(r,))
Moreover, to guarantee a continuous flow of electric bus operations, a flow constraint is imposed for
each service trip. This constraint mandates that after a bus completes a service trip or charging event,
it needs to proceed to its next activity:

Z Xij‘l'z Z z)% = Z x};+z Z Vive:Vj €N, Vk €K, (6.4)

i€B()) T€R tEBL(T,)) 1EF()) TER tEFL(T,))
For each charging station, there is a need to ensure that the number of vehicles charging
simultaneously does not exceed its charging spot capacity Ny

z z yE, + z wk_, <N,; VreRVteT, (6.5)

kEK jEB;(r,t) keK
Moreover, when a bus arrives to a charging station, it needs to depart from the charging station after
completing its specified charging event:

Z yE, +wk_, = Z Zrl'(tj'i'W?{ct; Vr e RVt €T",Vk € K. (6.6)
i€B;(7,t) JEF;(r,t)

To ensure that the total number of deployed buses matches the given fleet size p in the case of
deadhead distance minimization step (Fig. 53), the following constraint is introduced:

Z Z XD, = P- 6.7)

keEK jEN
6.3.3 Energy consumption constraints

First, every vehicle is set to begin the operating day with the battery charged at its upper limit:
ep, = S0Efqy; Vk € K. (6.8)

Furthermore, each bus must maintain its energy above the lower limit SoEYX .., while considering its
service trips, transfers, and routes to chargers whose SoE demands are specified by the constants c;,
cij» and ¢y, respectively:
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ef > SoEk, +¢; + z xfei + z Z yE,cir;ViEN,Vk €K, (6.9)
JEF (i) TER tEF.(1,0)
The following two constraints provides energy conservation between consecutive service trips,
where the first one ensures that the bus does not exceed its battery capacity, while the second one
guarantees that it retains enough energy for subsequent service trip:

ejk <ek— x{‘j(ci + ci]-) + SoErlﬁlax(l — xi"j);Vj € N,Vi € B(j),Vk €K, (6.10)

ef = el —xf5(c; + ¢;j) — SoEf (1 — x[5); Vj € N,Vi € B(j),Vk € K. (6.11)

The energy level of a bus, before embarking on a service trip, should reflect the balance of energy
gained during its last charge and the energy consumed traveling from the last charging point to the
next trip start:

ef <ef+2zf; ((sj — trj = Spe)qr — crj) + SoE¥ (1 —z%;); Vj € N,Vr € R, vt
€ B.(r,j),Vk € K.
The following two constraints manage e-bus energy levels utilizing a large enough constant M for
flexibility. The first constraint ensures that energy in a bus after charging remains within its maximum
capacity when adjusted for the next trip (the M-term provides flexibility if the trip is not scheduled):

(6.12)

SOEfax = ef + ¢yj — Mq, (1 —z)5;); Vr € R,Vt € T",Vk € K,Vj € Fy(r, t). (6.13)

The second constraint oversees energy levels during charging to ensure that the post-charge energy
does not exceed the maximum one, while considering the next charging event, (the M-term offers
flexibility if the bus does not advance to its next charge):

SOEK 4y = € p1 —Mq,(1—wk);vr e RVt €T, Vk € K. (6.14)

The following constraint ensures that a charged bus has adequate energy to travel from the charger
to the next service trip:

ef +cj+ Mq,(1—2z5%;) = SoEN, + 2 ¢, Vr € R,Vt € T",Vk € K,Vj € Fi(r,1). (6.15)

The following two equations are ensured by the preservation of energy between the service trip and
the charger, where the next charging occurs:

ek < el —yk.(c; + ciy) + SoEK . (1 — yE,); vr € R, vt € T",Vk € K, Vi € By(r,t). (6.16)
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ek > el — yk.(c; + ciy) — SoEK .. (1 — yE,);vr € R, vt € T",Vk € K, Vi € Bi(r,t). (6.17)

Furthermore, the following constraint delineates the energy that can be charged during an event,
accounting for the time gap between consecutive charging events:

ek < b+ wh(spe1 — sr)qr + SOEE 4 (1 —wk);Vr € RVt € T, Vk EK. (6.18)

Specifically, if two successive charging events have the same start time (influenced by the start times
and durations of service trips), no energy is charged between them.

The constraint below sets a limit on the energy that can be charged during an event. It does so by
considering the maximum energy that can be added before the next charging event starts on the same
charger if the bus moves on to the next service trip after charging:

ef + ¢j — & — S0Efqx (1 — 25;) < (Spex1 — Sre)qr; VT ER,VE ETT, VK €K,V
€ Fi (T', t)
Furthermore, the constraints below ensure that the energy charged during a charging event remains

non-negative. This is determined by the energy requirements on the subsequent trip or the next
charging event.

(6.19)

ef + crj — & + S0Ef 0, (1 — 2f;) = 0;Vr € RVt € T",Vk € K,Vj € Fi(r,1), (6.20)

ebi1— el + SoEk . (1—wk) = 0;vr e RVt € T",Vk EK. (6.21)

Finally, it is necessary to ensure that buses are fully charged at the end of the operating day. First, it
is stipulated that each bus needs to undergo charging before being parked at the depot for the start

of the next operating day:

TER tETT

Next, it is ensured that each bus is fully charged when completing the daily operation:
X + (Sfr41 — S5)qr = S0Efq — M(1 — 2zfp ), Vr €R,VEETT,Vk €K (6.23)

Finally, the system ensures that the conclusion of the final charging event for each bus should occur
early enough to allow the bus adequate time to be prepared for its initial trip on the subsequent day:

Sk Ssf+t+ 1440+ M(1 — 2Ky ), Vr €R,VEt € T".Vj € N,Vk € K. (6.24)
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where the constant 1440 represents a full day measured in minutes.

6.3.4 Domain constraints

The domain constraints specify the permissible values for the decision variables and the energy state
variables:

xf5 € {0,1};Vk € K,Vi € N U Dy, Vj € F(i) U Dy, (6.25)
z%; €{0,1};Vk € K,Vr € R,Vt € T",Vj € Fy(r, 1), (6.26)
yk. €{0,1};Vk € K,Vi € N,Vr € R, Vt € E.(r,1), (6.27)
wk €{0,1};Vk € K,vr e R,VtETT, (6.28)

ek >0;,vk e K,vr eR,VtETT, (6.29)

el > 0;Vk € K,Vi € N. (6.30)

6.4 Genetic algorithms approach

Genetic algorithms (GA), inspired by biological evolution, offer a unique and general approach to
optimization by simulating natural selection [18]. As such, they can handle complex and constraint-
heavy MILP formulations. When compared to MILP algorithms, the advantage of GAs is that they can
handle large-scale problems (e.g. a large number of trips, charging stations, constraints), while the
disadvantage is that they typically do not provide optimal solution (but rather converge in a nearly
optimal solution, which is closer to the optimal solution if the number of iterations is set to be higher).
Thus, in the context of e-bus scheduling optimization, the GA approach is employed as an alternative
method for large-scale problems.

The initial population of the GA has been formed by solving a relaxed MILP problem for 14 sub-
formulations. All 14 sub-formulations utilize either objective function (6.1) or (6.2), depending on the
optimization phase (see Fig. 53), while adhering to the vehicle scheduling constraints (6.3)-(6.7) and
the domain constraints (6.25)-(6.30). Between the remaining constraints (6.8)-(6.24), two randomly
selected constraints are added to each sub-formulation. Furthermore, each of these constraints is
present in at least one sub-formulation. This approach is aimed at fostering a swifter convergence of
the GA.
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Algorithm 4: Fitness function of genetic algorithm

FUNCTION fitness_ function(solution: Array) -> float:
# Decompose the solution into individual decision variables
X, y, z, W = reconstruct (solution)
# Translate the values into corresponding bus events
bus_events = generate bus events(x, y, z, W)
# Initialize violations counter
number of violations = 0
# Check for scheduling constraints
number of violations = CHECK VEHICLE SCHEDULING_ CONSTRAINTS (bus_events)
# Initialize SoE penalty
soe penalty = 0
# Compute energy details for each bus
FOR each bus in bus_events:
# Initialize the State of Energy
soe = MAXIMUM SOE
FOR event in each bus:
# Update SoE based on the event
soe = UPDATE_SOE (soe, event)
# Adjust soc_penalty if soc is negative
IF soe < 0:
soe penalty += ABS(soe)
# Adjust soe_penalty if the final soc is not 100
IF soe != 100:
soe penalty += (100 - soe)
# Compute the fitness value
penalty = 1 / num of buses
P = penalty * (soe_penalty + number of violations)
fitness = 1 - (num of vehicles / num of buses) - P

RETURN fitness

The GA employed the same solution representation as in the case of MILP formulation, where the
binary decision variables x{‘j, zftj, yk,, and wk, are optimized to obtain the final solution (see Fig 54).

To ensure feasibility and optimality, the GA fitness function has been carefully designed (see
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Algorithm 4). It assigns a lower value to solutions that use more vehicles and correspond to more
constraint violations.

The GA algorithm is set to run for 5,000 generations, and four mating parents were designated for
each generation. The steady-state selection method is chosen for parent selection, promoting a
gradual and consistent replacement of individuals in the population. A two-point crossover technique
is employed, where two random crossover points are determined and genes between these points
are swapped between two parent individuals. The mutation approach is of inversion type, where a
selected gene segment is reversed to introduce diversity and 10% of genes are subjected to mutation.
To maintain continuity, four parents from the current generation were retained for the subsequent
one. The GA was implemented using Python PyGad library.

6.5 Optimization results
6.5.1 Scenario generation and data description

A detailed system scenario has been developed to replicate the complexity of a city bus transport
system [19]. For the purpose of verifying the MILP optimization algorithm (Subsection 6.5.2), a
scenario involving 50 trips distributed across six distinct bus lines has been set up. Each line is
delineated by two endpoints (start and final) selected from a pool of six possible end stations, resulting
in some lines sharing the same end stations. Within this setup, three chargers are randomly placed
among these six end stations. The electric buses are set to have a battery with the capacity of 100
kWh, while the chargers provide power of 1.74 kWh/min, serving one bus at a time. The trips are
scheduled to begin randomly throughout the day, with intervals of 10 to 30 minutes between
consecutive trips. The trip duration ranges from 10 to 50 minutes, and the buses energy consumption
rate randomly varies in the range from 0.8 to 1.2 kWh/min. The deadhead distance is set to randomly
vary in the range from 10 to 50 km.

The GA optimization algorithm has been verified and compared with the MILP algorithm (Subsection
6.5.3) for a set of scenarios having the number of trips setting in the range from 5 to 500 and
maintaining the remaining foundational input parameters.

6.5.2 MILP optimization

The MILP methodology depicted in Fig. 53 and elaborated in Subsection 6.3 has initially been applied
to the case of conventional bus fleet. In this case, the problem formulation was reduced by removing
the charging elements and constraints. More specifically, the scheduling of conventional buses was
carried out by using the objective functions (6.1) and (6.2), and the constraints (6.3), (6.4), and (6.7),
while solely the decision variable x{‘j was involved. Subsequently, the MILP optimization has been
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conducted for the target case of e-bus fleet, where the full problem formulation of Subsection 6.3 is
used.

Fig. 55 shows the comparative Pareto frontiers obtained for the cases of conventional and electric
city bus fleets, where the MILP algorithm is used along the basic scenario including 50 trips. Evidently,
this system of relatively small size can be handled by only 5 conventional buses, in which case the
deadhead distance equals almost 550 km (Fig. 55a) or around 20% of the total distance made when
the number of buses is large enough to eliminate the deadhead distance (at least 32 buses; Fig. 55b).
Due to the range and charging constraints, the e-bus fleet requires higher minimum number of buses
compared to the conventional fleet (6 vs. 5, Fig. 55a) with the deadhead distance being reduced to
some extent (from 20% to 17.5%, Fig. 55b), and the Pareto frontier generally shifts to higher values
of the two objectives. However, as the number of electric buses increases (to 22), the Pareto frontier
approaches that of the conventional fleet. This is because the charging system is efficient enough not
to disturb the bus scheduling if the bus fleet is large enough.

(a) —e— Conventional fleet 200 I (b) —— Conventional fleet
—=+— Electric fleet —+— Electric fleet

S
o
o

8

o
-
N
)

n
(=1
o

Deadhead Distance [km]
Relative Deadhead Distance
(% of Total Distance)
5]
o

-
(=3
o

0

32 e
0
1
2
3
4
5
6
T
8
9
0
1
2
3
4
5
6
7
8
9

21

22

23

24

25

26

27

28

29

30

31

32

rrrrrrrrrr I o
Number of Buses [-] Number of Buses [-]

B i e e

Fig. 55 Comparative Pareto frontiers obtained by MILP approach in the case of conventional and electric
bus scheduling optimization

6.5.3 Comparative analysis of MILP and GA optimization results

A comparative analysis of the MILP and GA optimization results is presented in Fig. 56 for the case
of minimizing only the total number of buses criterion (6.1). Both conventional and electric fleets are
considered in the MILP case, while only the electric fleet is concerned in the GA case. For the sake of
clear comparison of the two approaches, the computation time of MILP algorithm has been restricted
to match that of the GA for the considered size of the transport system (i.e. the number of trips, the
x-axis in Fig. 56).

Fig. 56 indicates that the computational inefficiency of the MILP algorithm progressively grows with
the rise of system size, i.e. number of trips (not that the execution time axis is logarithmic). Moreover,
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as the system size expands, the MILP algorithm for electric fleet often fails to produce any feasible
solution within the allotted time, as evidenced by the missing solutions for 100, 200, and 500 trips in
Fig. 56. In contrast, the GA consistently yields feasible solutions for these larger trip numbers where
MILP falls short. While the GA tends to provide sub-optimal results (e.g. for 50 trips, Fig. 56), it aligns
with the MILP optimal solution for smaller-scale systems (same solution found for 10 and 25 trips)
and consistently follows the solutions yielded by the MILP algorithm for the large-size conventional
fleet. Hence, the GA is deemed to be a suitable choice for large-scale e-bus transport systems.
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Fig. 56 Comparison of minimal numbers of buses obtained by using MILP and GA approaches for various
sizes of city bus transport system

6.6 Short conclusion

A multi-objective e-bus scheduling optimization approach has been proposed based on the Mixed
Integer Linear Programming (MILP) problem formulation. The strategy seeks to minimize not only the
e-bus fleet size, but also the deadhead distance, thus offering a spectrum of Pareto optimal solutions
as a trade-off between investment and operating costs. The problem formulation accounts for charge
sustaining condition, integrated charging at depot, and inherent variability of buses and charger
parameters.

Using a MILP solver offers the optimal solution, but its computational inefficiency restricts it to small-
size transport systems. The results indicate that, when compared to the conventional e-bus transport
system, the e-bus system faces performance reductions due to vehicle range and charging
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restrictions. This gap eventually narrows with increasing the fleet size, because the range and charging
restrictions become less relevant for the expanded fleet size.

To address scalability, the problem has also been solved by using a genetic algorithm (GA). The GA
solution matches the MILP solution for small-scale systems, and at the same time offers feasible near-
optimal solutions for large-scale systems, thus proving its suitability for large e-bus fleets’ scheduling
scenarios.

7 Conclusion and outlook

The previously developed SOLEZ project software application for city bus transport electrification
planning has been modified and extended through this deliverable to expand its applicability
(including airport landside and e-hub systems), provide automated optimization features, and increase
its accuracy. The newly developed software solutions are organized around four characteristic
modules:

1) A trip-based data-driven e-bus model has been developed to substantially reduce the virtual
transport system simulation execution time and the transport data demand. The former makes
the mid/large-scale virtual simulation and optimization studies feasible, while the latter allows
application to typical situations where only low-resolution recorded driving cycle data are
available either through bus transport system tracking or planning. The data-driven e-bus
model has been parameterized and tested for a wide range of driving cycles and scenarios, and
it has been demonstrated that its accuracy approaches that of the experimentally validated
physical e-bus model.

2) A charging configuration optimization framework has been established and solved by a multi-
objective genetic algorithm (GA). The optimization results in a Pareto frontier in three
objectives being minimized: the number of charging terminals, the total number of chargers,
and the total (cumulative) trip service delay caused by e-bus range and charging constraints.
This module provides an automated and optimal design of the charging system, thus minimizing
the investment costs while penalizing for the service delay. The designer simply selects a
convenient point from the Pareto optimal frontier based on his/her expert knowledge, rather
than nominating multiple (and still limited) charging configurations and running virtual
simulations in a manual way.

3) A model predictive control (MPC) strategy for optimal online charging management has been
developed along with an offline tool for globally optimal offline charging management
optimization. A custom-made dynamic programming (DP) algorithm has been used in both
tools to provide globally optimal solution for a general (nonlinear) problem formulation. The
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main objective is to minimize the charging electricity cost, partly by boosting the share of
electricity produced from local renewable sources. The MPC strategy is run on the simplified
aggregate battery level to facilitate its application to large-scale systems such as e-hubs. The
MPC-commanded aggregate charging power its then distributed to individual vehicles by using
a heuristic algorithm based on charging priorities of individual vehicles. It has been
demonstrated through a realistic case study that the hierarchical MPC strategy can approach
the offline optimization benchmark to a narrow margin. The strategy can be used to make the
e-hub planning studies more realistic, as well as in on-line charging management applications.

4) An e-bus scheduling optimization algorithm has been designed based on the mixed integer
linear problem (MILP) formulation and MILP and GA solver alternatives. The objectives are to
minimize the e-bus fleet size (i.e., the total number of buses) and the service deadhead distance
(i.e., the extra miles to switch between lines), while satisfying the predetermined e-bus lines,
timetables, energy demand, and charging constraints. This results in a Pareto frontier in the
two objectives, from which the designer can readily choose a point which satisfies the
transport system practical constraints at best. The main benefit of the developed scheduling
solution includes exploiting the e-bus re-scheduling opportunity in a strictly optimal way to
mitigate the e-bus range- and charging-related restrictions and, thus, minimize the fleet
investment cost, while leveraging the exploitation cost in terms of additional mileage and,
correspondingly, energy consumption.

In the remaining course of WP2.1 to be resulted in D2.2 by M54, the developed software solutions
will be exploited to optimally design the airport-city (and intra-airport) e-bus transport system and
the airport e-hub system based on real (recorded) transport and energy system data related to Zagreb
airport and Paris-Charles de Gaulle airport.
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