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1 Executive summary 

1.1 Introduction 

City-type buses are used to connect airports with cities and also to provide intra-airport landside 
transport (terminal-terminal, parking-terminal). In order to reduce emissions of pollutants and 
greenhouse gases, reduce noise emissions, and increase customer satisfaction, the existing 
conventional airport-city and intra-airport buses should be replaced by electrical ones, where an 
ultimate solution is fully electric bus (e-bus). Moreover, electric power engaged for intermittent 
charging of e-buses can be utilized to establish an airport e-hub to provide charging services for 
customer (passenger) vehicles at the airport parking lots. 

To mitigate the disadvantages of e-buses in terms of limited range, high cost, need for charging 
infrastructure, and relatively long charging time, and speed up the electrification process, there is a 
need for software solutions (applications) for electrification planning. Such a software solution has 
been developed by the FME team through the Interreg CE project SOLEZ and demonstrated on the 
pilots of cities of Dubrovnik and Žilina [1]. It is based on virtual simulation of an e-bus fleet over actual 
(recorded) driving cycles and setting optimal e-bus and charging infrastructure configurations to 
minimize the total cost of ownership calculated by the techno-economic analysis module. 

The SOLEZ software solution has been significantly modified and extended through this deliverable 
in terms of computationally more efficient e-bus fleet simulations, automated and more accurate 
charging configuration optimization, predictive and optimal charging management, and optimization 
of e-bus scheduling for lower investment cost, having in mind application to the city-airport and intra-
airport bus transport systems and the airport e-hub. The extended software solution will be applied 
in the remaining course of the project for optimal planning of the airport bus system electrification at 
Paris-Charles de Gaulle airport and Zagreb airport and the e-hub system at the Zagreb airport (to be 
delivered in D2.2 by M54). 

1.2 Brief description of the work performed and results achieved 

The work performed and the results achieved are outlined below in relation to the four components 
of the work. 

1) A trip-based data-driven e-bus model has been built up to substantially speed up the e-bus 
fleet virtual simulation and, thus, the whole software solution, while requiring only trip-based 
driving cycle features that are usually available to transport operators through bus tracking 
system or planning tools. 
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2) A multi-objective genetic algorithm (GA)-based charging configuration optimization solution 
has been developed to automate optimization of charging stations and chargers’ deployment 
and minimize the investment cost and the fleet service delay. The optimization results in a 
Pareto frontier of optimal solutions reflecting the minimization of the conflicting objectives 
including the number of charging stations, the total number of chargers, and the service delay, 
from which the operator can select a most favourable solution for the given transport system. 

3) Model predictive control strategy for optimal online charging management of a fleet of 
vehicles aggregated through a transport operator or an e-hub provider has been designed. The 
strategy minimizes the cost of charging electricity based on prediction of transport demand, 
electricity cost, and production from local renewable energy sources, thus providing a more 
accurate electrification planning outcomes and more competitive and cleaner charging 
services. 

4) E-bus scheduling optimization has been developed based on a mixed integer linear 
programming (MILP) formulation and two complementary solvers (MILP and GA). This solution 
allows for scheduling optimization targeted at e-buses to minimize the number of busses, 
where the buses can change the lines dynamically for the best utilization of their remaining 
range and charging opportunities. The optimization results in a Pareto frontier in two 
conflicting objectives including the total number of buses and a deadhead distance (the 
distance travelled while changing the lines), from which the operator can pick a most beneficial 
solution for the given transport system. 

2 Structure of software solution  

2.1 Target application 

The airport-to-city (and intra-airport) e-bus transport system should be electrified for clear 
environmental and social benefits (Section 1). Due to the availability of high-power electricity 
installation including an excellent potential for deploying renewable energy sources (RES; 
photovoltaic panels, in particular), the airport would be a natural candidate for installing an e-bus fast-
charging station. Since the e-bus dwelling/charging time at the airport would be relatively small, the 
engaged power remains for the most of time at disposal for supplying other airport landside vehicles 
and particularly customer electric vehicles (passenger, taxi, rent-a-car, and sharing vehicles) being 
parked at the airport parking lots (Fig. 1). By designing such an e-hub, the airport can provide better 
utilization of the local grid and RES, and at the same time offer charging services for better customer 
satisfaction, environment protection, e-mobility proliferation, and increased income/profit. 
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Fig. 1 Illustration of airport-city bus transport electrification and e-hub establishment planning framework 

The overall e-bus transport and e-hub system becomes quite complex and requires proper software 
solution for optimized planning to minimize the investment (e.g., e-buses, charging stations) and 
operational costs (e.g., electric energy). Typical questions which such an electrification planning study 
should generally address include: 

(i) what type of e-bus (HEV, PHEV, BEV) and with what size of battery are recommended (the 
emphasis is on BEV, i.e. fully electric vehicle); 

(ii) what type of chargers and with what rated power are recommended (e.g., slow/night charging 
only, fast charging from grid, fast charging from a stationary battery); 

(iii) where should the chargers be located (city or airport) and how the airport building power grid 
(including RES, stationary battery and similar) should be configured for minimum cost and CO2 
emissions; 

(iv) how should the e-hub system be configured in support of charging other e-vehicles;  

(v) how should the e-bus fleet and e-hub scheduling and charging management system be 
implemented; and  
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(vi) what would be proper ICT solutions in support of overall vehicle-grid integration including 
interoperability? 

As far as the bus transport electrification planning is concerned, the software solution/tool developed 
by the FME team through the Interreg CE project SOLEZ [1] may be used to provide answers to the 
above questions, based on a virtual simulation of the targeted electrified transport system using 
recorded driving cycles and faithful physical e-bus models. However, to address the e-hub design 
needs and provide automated charging configuration and bus scheduling optimization, the SOLEZ 
tool should be significantly extended. The tool is described in Subsection 2.2, its limitations are 
discussed in Subsections 2.3, and its modifications and extension made through this project are 
outlined in Subsection 2.4. 

2.2 Description of existing software solution developed through SOLEZ project 

Fig. 2 illustrates the structure of the city bus transport planning software tool developed through 
SOLEZ project [1]. The tool is driven by recorded driving cycle data, and as the main output it delivers 
the Total Cost of Ownership (TCO) over the projected fleet operational period (e.g., 12 years). The 
Data Post-Processing Module (DPPM) transforms the recorded driving data into individual driving 
cycles, and it also calculates various statistical features characterizing the conventional city bus 
transport behaviours. The Electric Bus Simulation Module (EBSM) provides computer simulations of 
different types of city buses (CONV, HEV, PHEV, BEV) over the driving cycles extracted by the DPPM. 
The module outputs include the individual bus energy consumption (fuel and/or electricity) and 
various features of powertrain response (e.g., engine/e-motor operating points, gear ratio trajectories, 
etc.). The Charging Optimization Module (COM) utilizes the outputs of DPPM and EBSM to virtually 
simulate the overall city bus fleet over the recorded driving cycles and optimise the PHEV- and BEV-
type bus charging configuration and management. This module provides the number, location, and 
type of chargers, the bus battery capacity, and the number of reserve buses in the BEV case, which 
are required to fulfil the driving routes with sufficient battery charge. The COM also outputs the total 
fuel and/or electricity consumption over the considered period of operation. The Techno-Economic 
Analysis Module (TEAM) uses the output data from the COM module, as well as the data on bus 
transport investment and exploitation/maintenance cost, in order to calculate the TCO. 
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Fig. 2 Organizational structure of e-bus transport electrification tool developed through SOLEZ project 

The simulation tool is written in Python object-oriented programming language, with computationally 
demanded routines coded in C language. It is designed in a user-friendly way (based on a graphical 
user interface (GUI) including windows, tabs, I/O data interfaces, etc.) and having in mind 
transferability to other cities in a way that it uses a common/shared database. The database serves 
as a main storage for recorded driving cycle data and plays the role of an intermediary between the 
main tool modules. In addition, the simulation tool includes the Data Management Module (DMM), 
which provides greater flexibility and adaptability to different cities’ transport system configurations. 
DMM enables the user to define all static data (system parameters) required by the simulation tool, 
e.g. those related to vehicle model parameters, end-station and depot locations, charging station 
parameters and techno-economic data. 

2.3 Limitations of existing software solution 

The following restrictions of the SOLEZ solution have been identified from the perspective of more 
effective and accurate application to a wide range of electrification studies including the one 
considered in this project and outlined in Subsection 2.1: 
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1) Physical models of e-buses are used in the EBSM, which is connected with the following 
disadvantages: (i) physical models require high-resolution driving cycles (with a typical 
sampling frequency of 1 Hz) that are not regularly available to e-bus operators and (ii) use of 
such an approach ends up in a relatively long simulations which prevents the tool from 
application to large-scale transport systems (hundreds or thousands of e-buses) and/or studies 
based on automated optimization (where a great number of simulation is conducted). 

2) Charging configuration determined by locations and number of chargers is determined 
“manually” by the COM, i.e. by nominating a certain number of configurations, repeating the 
virtual simulation, and finding the one which gives the minimum TCO. Based on the knowledge 
gained from the initial COM execution, a new set of configurations can be nominated, and the 
process is repeated. The main disadvantage of this process includes the need for significant 
involvement of expert knowledge and hours. Also, it generally gives suboptimal results due to 
a limited configuration search. 

3) The transport system virtual simulation is run by the COM for a fixed (predetermined) e-bus 
schedules, typically corresponding to the conventional e-bus fleet schedules. The solution 
obtained in that way is generally suboptimal, because the range and charging restrictions of e-
buses are missed to be overcome to some extent by re-scheduling the buses (e.g., a charged 
bus can move to another line to take the service of buses being charged on that line, or an 
empty bus can be reallocated to another line where there is a free charger). 

4) The charging management algorithm implemented within the COM is based on a simple 
heuristic, rule-based logic, which may result in distinctively sub-optimal solution for mid/large-
scale transport systems and can hardly be used when planning and managing the e-hub system. 
 

2.4 New features of upgraded software solution 

The limitations of the SOLEZ solution have been overcome by developing a set of new software 
modules. They are outlined below in the same order as given for the corresponding limitations listed 
in Subsection 2.3, and are elaborated in details in Sections 3-6: 

1) Trip-based data-driven e-bus model (Section 3). The physical model is replaced by its data-
driven approximation, which calculates the e-bus energy consumption directly from the trip-
lumped features such as distance travelled, average velocity, average road slope etc. Provided 
that the approximation errors are small, the advantage of using the trip-based data-driven 
model is twofold: (i) the model executes swiftly, thus being suitable for large-scale and 
optimization-based electrification studies and (ii) the model training requires usually available 
trip-based features of the driving cycle. The e-bus powertrain model development includes the 
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following characteristic phases: a) preparation of training and validation/testing datasets, b) 
selection of relevant driving cycle features, c) model parameterization and validation, and d) 
model assessment. The HVAC system model is developed separately, and the energy 
consumptions predicted by the two models are summed up. 

2) Charging configuration optimization (Section 4). A multi-objective genetic algorithm (GA) is 
used to optimize the charging configuration given by the locations of charging stations and the 
number of chargers per each charging station. The optimization is conducted for the e-bus 
transport system represented by a computationally efficient trip-based model. The 
optimization results in a Pareto frontier in the following three objectives: the number of 
charging stations, the total number of chargers, and the total (cumulative) e-bus fleet delay 
caused by charging restrictions. A special attention is given to designing an algorithm that finds 
a set of configurations with the minimum number of charging stations, whose results are used 
to reduce the search space of the GA. The designer picks a point from the Pareto frontier 
which provides a good trade-off of investment cost (number of charging stations and chargers) 
and operational delay cost, and at the same time provides a reserve (i.e., robustness) against 
the transport system modelling errors. 

3) E-bus scheduling optimization (Section 6). For the given transport system (defined by e-bus 
type, lines, and timetables) and (pre-optimized) charging configuration, e-bus scheduling is 
optimized in terms of which bus takes which service trip, including the possibility to move 
buses between lines to fulfil the timetables and/or take the opportunity to recharge. The 
optimization problem is defined as a MILP problem, considering various charging constraints 
including the charge sustaining condition (all the buses should have the same initial and final 
state of charge conditions and allowing for a wide system specification flexibility (e.g. in terms 
of specifying individual charger maximum power, the number of chargers per stations, the bus 
battery capacity etc.). The optimization problem is solved by a MILP algorithm and a GA, where 
the former provides optimal solution but is impractical for large-scale systems due to 
computational inefficiency, while the latter is computationally efficient but only nearly optimal. 
The optimization results in a Pareto frontier in two objectives being minimized: the total 
number of buses and the deadhead distance. The Pareto frontiers have been obtained for both 
e-bus and conventional bus fleets, and they are comparatively analysed. 

4) Model predictive charging management (Section 5). A model predictive control (MPC) 
strategy, run over a receding horizon or a single-day shrinking horizon, is designed to handle 
online charging management in an optimal and predictive manner. The optimality is formulated 
in minimizing the total charging electricity cost, while the predictive feature relates to 
anticipating varying electricity prices, RES production, and transport demand. In order to make 
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the strategy feasible for large-scale systems, such as the e-hub one, it is formulated to have a 
hierarchical structure, where (i) the upper layer optimizes the aggregate charging power based 
on the transport system modelled by an aggregate battery, and (ii) the lower layer distributes 
the aggregate charging power to individual vehicles based on their priorities in terms of actual 
battery state of charge and charging station departure time. The upper-layer MPC strategy 
relies on a dedicated dynamic programming (DP) solver to handle generally nonlinear and 
discontinuous transport and energy system model and constraints. The efficiency of online 
MPC strategy is demonstrated by comparing the charging management results with those 
obtained by using globally optimal (full-horizon) DP optimization on the aggregate level. 

The above software modules have been demonstrated on the case studies available through previous 
projects of the FME team, because the anticipated OLGA pilot studies’ data have not been fully 
acquired during the course of software solution development. The OLGA pilot studies are subject of 
forthcoming work, and the results will be published in D2.2 by M54. 

3 E-bus model 

3.1 Introduction 

E-bus model is a key element of the overall software solution (Section 2), as it provides virtual 
simulation of e-bus fleet for realistic driving cycle. The e-bus fleet energy consumption gained 
through the virtual simulation represents a crucial input to charging configuration and management 
algorithms, as well as techno-economic analyses (Fig. 1). 

The energy consumption predictions are usually based on elementary, physics-based, and data-driven 
models. The elementary model includes a direct relation between the e-bus energy consumption and 
a travel feature (typically the distance travelled). It tends to oversimplify real-world scenarios, thus 
compromising the prediction accuracy. The physical models include first-principle equation describing 
the vehicle powertrain and longitudinal dynamics behaviours. However, they require a number of 
physical parameters and maps, as well as high-sampling-rate driving cycle data, which can be 
challenging and costly to obtain in regular fleet operation applications. On the other hand, the data-
driven methods employ machine learning techniques, including neural networks and random forests, 
and generally provide favourable accuracy. However, to accurately capture real-world patterns, they 
require large input/output datasets that are not readily available, particularly for e-bus fleets. 

To mitigate the limitations of the existing methods, this section presents a novel macroscopic data-
driven regression model for e-bus energy consumption prediction. A rich dataset for model 
parameterization and validation is generated by using an experimentally validated physical e-bus 
model. The data-driven model relies on trip-centric input data such as distance travelled, mean 
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velocity, and road gradient, which are usually available from city bus transport planning or GPS 
tracking datasets. Given its rapid execution speed, the model is well-suited for comprehensive large-
scale city-bus electrification planning studies. The model is presented for a fully-electric city bus of 
12 m size. It can readily be extended to other bus types such as conventional, hybrid, and plug-in 
hybrid buses and other bus sizes such as 18 m bus. A special attention is devoted to modelling of 
heating, ventilation and air-conditioning (HVAC) system, since it represents the second largest energy 
consumer (after the powertrain). 

The remaining part of this section is organized as follows. Subsection 3.2 presents the experimentally 
validated physical e-bus model, which is used in Subsection 3.3 as a basis for sensitivity analysis of e-
bus energy consumption and in Subsection 3.4 for data collection used in data driven e-bus modelling. 
Feature selection in support of data-driven modelling is described in Subsection 3.5. Subsection 3.6 
presents, validates, and assesses the final data-driven e-bus model consisting of separate powertrain 
and HVAC system submodels. Subsection 3.7. gives concluding remarks. 

Note: The work presented in this section has been disseminated through the following conference 
papers (the first one on physical model, and the second one on data-driven model), which also include 
a methodology state-of-the-art review and elaborates on the contributions of the approaches 
proposed: 

J. Deur, I. Cvok, I. Ratković, J. Topić, J. Soldo, F. Maletić, “Backward-looking Modelling of a Fully Electric 
City Bus with Emphasis on Cabin Heating and Cooling Subsystem”, 18th Conference on Sustainable 
Development of Energy, Water and Environment Systems (SDEWES), Dubrovnik, Croatia, 2023. 

Z. Dabčević, B. Škugor, J. Deur, “A Trip-Based Data-Driven Model for Predicting Battery Energy 
Consumption of Electric City Buses”, 18th Conference on Sustainable Development of Energy, Water and 
Environment Systems (SDEWES), Dubrovnik, Croatia, 2023. 

3.2 Physical e-bus model 

3.2.1 Recorded driving cycle and energy consumption data 

The driving cycle and energy consumption data have been recorded on a single, 12 m e-bus operating 
on Route 15 in the city of Jerusalem [7]. The route is bidirectional and stretches between the end 
stations Binyenei HaUma and Talpiot. The data were collected on August 13, 2020 (peak summer 
season) in the period from 7 am to 9 pm. The recording was continuous with the sampling time of 1 
second, and it concerned the following data: timestamp, geographical coordinates (longitude, latitude 
and altitude), velocity, distance travelled, cumulative battery energy consumption and battery SoC. 
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The considered dataset contains 14 trips in total (7 for each travel direction), where each individual 
trip is defined as driving between the two end stations in either direction. The velocity profile along 
the day is shown in Fig. 3a. The total distance travelled is approximately 122.5 km for the net 
operating time of 11.5 h. The corresponding reconstructed ridership profile is shown in Fig. 3b. Finally, 
the actual ambient temperature (𝑇𝑎) and solar irradiance (𝑄̇𝑠𝑜𝑙) data profiles are shown in Fig. 3c. 

 

Fig. 3 Recorded city bus driving cycle time profile data: vehicle velocity and distance travelled (a), ridership 
(b), and ambient temperature and solar irradiance (c) 

Fig. 4a shows the scatter plots of recorded altitude data in relation to distance travelled for direction 
Binyenei HaUma–Talpiot (further abbreviated as A–B) and multiple trips. The reconstructed road 
slope profile is shown in Fig. 4b. The driving direction A-B is characterised by mostly downhill driving 
with the road slope peaks up to 5 deg. In order to reduce noise in the reconstructed road slope profile, 
before being differentiated the recorded altitude profiles were averaged and filtered by a low-pass 
double-sided Butterworth filter of third order (see solid line in Fig. 4a). The results for the opposite 
direction (B-A) are not shown for the sake of brevity. 
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Fig. 5 shows the recorded battery SoC and cumulative energy consumption time profiles 
corresponding to the driving cycle in Fig. 3a. These profiles are used as a reference for e-bus model 
parameterization. By linearly extrapolating the energy consumption profile over the whole SoC range 
[0,1] and subtracting the observed end values, one obtains the total battery capacity of 292.5 kWh, 
which equals 91% of the declared, new bus battery capacity of 324 kWh. The difference between the 
two battery capacity values can be attributed partly to nonlinear battery behaviour, and partly to 
battery aging (the bus was produced in 2017). 

 

Fig. 4 Reconstructed road altitude (a) and 
road slope profiles (b) with respect to 

distance travelled 

 

 

 

 

 

Fig. 5 Time profiles of battery SoC and cumulative 
battery energy consumption 

3.2.2 Powertrain model 

The powertrain of the considered fully electric city bus is modelled in the backward-looking manner, 
i.e. in the direction from the wheels towards the electric machine. The driving cycle-defined vehicle 
velocity (vv), road slope (θ) and ridership inputs (Subsection 3.2.1) are fed into the vehicle longitudinal 
dynamics equations to calculate the total wheel torque and the wheel speed [2]: 

𝜏𝑤 = 𝑟𝑤𝑀𝑣𝑣̇𝑣 + 𝑟𝑤𝑅0𝑀𝑣𝑔 cos(𝜃) + 𝑟𝑤𝑀𝑣𝑔 sin(𝜃) + 0.5𝑟𝑤𝜌𝑎𝑖𝑟𝐴𝑓𝐶𝑑𝑣𝑣
2, (3.1) 

𝜔𝑤 =
𝑣𝑣
𝑟𝑤 
, (3.2) 
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where 𝑟𝑤 is the tire effective radius, 𝑀𝑣 = 𝑀𝑣0 +𝑀𝑝𝑎𝑠𝑠 is the sum of the empty vehicle mass (Mv0) and 

the total passengers’ mass (𝑀𝑝𝑎𝑠𝑠), 𝑅0 is the rolling resistance coefficient, 𝜌𝑎𝑖𝑟 is the air density, 𝐴𝑓 is 

the bus frontal area, 𝐶𝑑 is the aerodynamical drag coefficient and 𝑔 is the gravity acceleration. The 
individual passenger mass is estimated to 68.125 kg to make a full bus with the passengers’ capacity 
of 80 match the declared maximum vehicle payload. Therefore, the passenger mass 𝑀𝑝𝑎𝑠𝑠 is calculated 

as 68.125 ∙ 𝑛𝑝𝑎𝑠𝑠, where the ridership 𝑛𝑝𝑎𝑠𝑠 is given in Fig. 3b. 

The e-machine torque (𝜏𝑀𝐺) and the speed 𝜔𝑀𝐺 are calculated as: 

𝜏𝑀𝐺 =
𝜏𝑤𝜂𝑡𝑟

𝑘𝑡(𝜏𝑤) +
𝑃0(𝜔𝑤)
𝜔𝑤

𝑖0
, 

(3.3) 

𝜔𝑀𝐺 = 𝑖0𝜔𝑤, (3.4) 

where 𝑖0 is the final drive ratio, while 𝜂𝑡𝑟(𝜏𝑤) and 𝑃0(𝜔𝑤) are the drivetrain efficiency and the idle 
power loss maps, respectively, with kt being defined as −1 for τw > 0 (motoring) and 1 for τw ≤ 0 
(regenerative braking). These maps have been reconstructed by properly scaling the maps available 
in literature with respect to maximum speed and power ratios of the particular e-bus and the 
reference vehicle from literature (see [3] for more details). 

The e-machine efficiency 𝜂𝑀𝐺  is modelled by a map dependent on the e-machine speed and torque 
(see Fig. 6), from which the e-machine power load to the battery is calculated as: 

𝑃𝑀𝐺 = 𝜂𝑀𝐺
𝑘 (𝜏𝑀𝐺 , 𝜔𝑀𝐺)𝜏𝑀𝐺𝜔𝑀𝐺, (3.5) 

where the exponent k depends on the e-machine operating mode: k = −1 for motoring (𝑃𝑀𝐺 > 0), and 
k = 1 for regenerative braking (𝑃𝑀𝐺 < 0). The map in Fig. 6 is adopted from the map published in [4] 
for a similar M/G machine and scaled based on the Willans line method with respect to maximum 
speed and power ratios of the particular and reference M/G machine.  
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Fig. 6 Normalised efficiency map and maximum torque characteristics of e-machine 

3.2.3 Battery model 

The battery model is based on a single cell model scaled up to the appropriate number of serially 
connected cells contained in the battery pack. The single cell equivalent circuit model (ECM) has been 
developed based on the available data from the SAFT VL30PFe cell datasheet and reference [5]. The 
battery ECM is shown in in Fig. 7a, and it consists of the open-circuit voltage source (𝑈𝑜𝑐) and the 
internal resistance (𝑅𝑖𝑛𝑡). Both parameters are made dependent on the battery SoC, as shown in Fig. 
7b. Temperature dependencies of both parameters are neglected, since it is assumed that the e-bus 
includes an effective battery thermal management system. 

The battery SoC dynamics are described by state equation: 

𝑆𝑜𝐶̇ = −
𝐼𝑏𝑎𝑡𝑡
𝑄max

 =
√𝑈𝑜𝑐2 (𝑆𝑜𝐶) − 4𝑅𝑖𝑛𝑡(𝑆𝑜𝐶)𝑃𝑏𝑎𝑡𝑡 − 𝑈𝑜𝑐(𝑆𝑜𝐶)

2𝑄max𝑅𝑖𝑛𝑡(𝑆𝑜𝐶)
, (3.6) 

where Ibatt is the battery current, Qmax is the battery charge capacity, SoC = Q / Qmax is the state of 
charge, and Pbatt is the total battery power including the e-machine power PMG given by Eq. (3.5), and 
the powers of auxiliary devices (Paux) and HVAC system (PHVAC) determined by the models described 
in the next two subsections: 

𝑃𝑏𝑎𝑡𝑡 = 𝑃𝑀𝐺  + 𝑃𝑎𝑢𝑥 + 𝑃𝐻𝑉𝐴𝐶 . (3.7) 

Note that the slowly changing SoC variable is the only state variable of the overall e-bus backward-
looking model (a quasi-static model). The battery charge capacity is obtained from the energy capacity 
Emax = 292.5 kWh as Qmax = Emax / Uoc(SoC = 50%) = 459 Ah. 
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Fig. 7 Battery equivalent circuit (a) and SoC dependencies of open-circuit voltage and internal battery 
resistance for considered LFP battery (b) 

3.2.4 Model of auxiliary devices 

The main auxiliary devices considered include servo steering, air compressor supplying brakes and air 
suspension, and DC/DC converter supplying low voltage auxiliary devices (e.g. wiper, electronic 
devices, light beams and similar). The power consumption of these devices is modelled based on their 
nominal power and a power-modulating binary signal (see [1] and references therein). The nominal 
power values, and the values of binary signal duty cycle and period are given in Table 1 for the three 
auxiliary devices. Note that the DC/DC converter power load is set to be constant. The total auxiliary 
device load 𝑃𝑎𝑢𝑥 is obtained by summing up the contributions of each device load (simulated according 
to the parameters in Table 1) and fed to the total battery load expression (3.7). 

Table 1 Values of nominal power (𝑃𝑎𝑢𝑥,𝑁), duty cycle (𝑑𝑐) and duty cycle period (𝑡𝑝) of modelled auxiliary 
devices 

Auxiliary device 𝑷𝒂𝒖𝒙,𝑵 [W] 𝒅𝒄 [-] 𝒕𝒑 [s] 

Servo steering 2500 0.09 400 

Air compressor 2000 0.15 100 

DC/DC converter with low voltage devices 184 1 N/A 
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3.2.5 HVAC system model 

The presented HVAC modelling method can be applied for both A/C and heat pump modes. Since 
the considered driving cycle (Fig. 3) corresponds to a hot summer day, the model parameterization is 
presented for the A/C mode. The main assumption is that the HVAC device response is much faster 
than the cabin thermal transients, so that the overall system is represented by the bus cabin model 
depicted in Fig. 8. A proportional-integral-derivative (PID) controller commands the cooling power 
𝑄̇𝐻𝑉𝐴𝐶 to maintain the cabin temperature Tcab at it reference value Tcab,R. The cooling power 𝑄̇𝐻𝑉𝐴𝐶 is 
limited in accordance with the datasheet of assumed HVAC device (Eberspächer AC136 AE HP HVAC 
system, [6]). The reference variable Tcab,R is generated in dependence of the ambient temperature Ta 
(see cyan line in Fig. 8), which is set to fall between the bounds defined by VDV 236:2015 guidelines 
for public transport (red and green lines). Based on the assumption of fast HVAC system response 
and the assumption of constant coefficient of performance (COP = 1.8), the HVAC power 
consumption PHVAC from Eq. (3.7) is determined as 𝑄̇𝐻𝑉𝐴𝐶/𝐶𝑂𝑃. 

 

Fig. 8 Illustration of HVAC system energy consumption model 

The thermal dynamics model includes four thermal masses (Fig. 8): cabin air, interior body, and inner 
and outer chassis shells; and different thermal loads: conduction, convection and radiation between 
the thermal masses, solar irradiance, and passenger metabolic load. The model is implemented in 
Dymola as illustrated in Fig. 9. The model inputs include the ambient temperature (𝑇𝑎), the solar 
irradiance (𝑄̇𝑠𝑜𝑙), the vehicle velocity (vv) and the ridership (npass). 
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Certain parameters of the cabin thermal model were difficult to determine or estimate due to either 
lack of available data (e.g. bus body paint colour or glass tinting) or complex parameter dependencies 
(e.g. heat exchange between interior elements). There were five such parameters: the heat transfer 
coefficients combined with lumped interior elements surface for convective heat transfer between 
interior and cabin air, and between interior chassis shell and cabin air, the conduction coefficient 
between interior and exterior chassis shell, the glass transmissivity coefficient for interior solar 
irradiance load, and the combined transmissivity and absorptivity factor for solar irradiance on the 
body exterior surface. 

 

Fig. 9 E-bus cabin thermal model implemented in Dymola 

The unknown cabin thermal model parameters have been determined through optimization by using 
modeFrontier software. The optimization setup is illustrated by the block diagram shown in Fig. 10. 
The overall model used in the optimization setup includes not only the Dymola thermal model but 
also the powertrain Python model. This is to obtain simulation responses of the battery SoC and the 
overall energy consumption Esim = ∫Pbattdt, which are compared with the recorded SoC and energy 
consumption responses to generate the corresponding RMS errors fed to the optimization genetic 
algorithm MOGA-II to minimise those errors. The two-objective optimization has resulted in a Pareto 
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frontier of optimal solutions. The selected solution corresponds to a low energy consumption RMS 
error, and it results in a favourable overall fit accuracy (partly because of a better resolution of the 
recorded energy consumption signal than the recorded SoC signal). 

 

Fig. 10 Block diagram of optimization setup used to determine unknown parameters of bus cabin thermal 
model 

The simulation profiles of e-bus model variables, obtained through the cabin thermal model parameter 
optimization and shown in Fig. 11, have further been used to optimise parameters of a HVAC 
regression model to be used within the e-bus backward-looking model. The regression model is linear 
in parameters and its inputs correspond to the inputs of the cabin thermal model (𝑇𝑎, 𝑄̇𝑠𝑜𝑙, vv and npass). 
Matlab function stepwiselm available within Statistics and Machine Learning Toolobox has been used 
to select the model features and optimise its parameters. The selected model is given by: 

𝑃𝐻𝑉𝐴𝐶 = 𝛽0 + 𝛽1𝑇𝑎 + 𝛽2𝑄̇𝑠𝑜𝑙 + 𝛽3𝑛𝑝𝑎𝑠𝑠 + 𝛽4𝑣𝑣𝑒ℎ + 𝛽14𝑇𝑎𝑣𝑣𝑒ℎ + 𝛽22𝑄̇𝑠𝑜𝑙
2
. (3.8) 

Comparative responses of the actual and simulation responses of SoC, energy consumption and 
HVAC power, shown in Fig. 11, indicate very good modelling accuracy on the dataset used in model 
parameterisation (training). 
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Fig. 11 Response of recorded e-bus model variables for dataset used in model training and corresponding 
simulation responses of SoC, energy consumption and HVAC power  
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3.2.6 E-bus model validation 

For an unbiased assessment of modelling accuracy, the overall e-bus model has also been validated 
against a couple of other datasets (corresponding to different days of operation of the same bus on 
the same route during the same summer month). The results of the first validation, shown in Fig. 12a, 
confirm the very good modelling accuracy. 

 

Fig. 12 E-bus model validation for first (a) and second validation dataset (b), as well as for second 
validation dataset but with simulated A/C system switched of from 7 am and to 10 am 

However, the model performance degrades for the second validation (Fig. 12b) in terms of occurrence 
of SoC and energy consumption offsets during a relatively long bus pause (dwell time) at the end 
station after the second driving mission (i.e., after 8 am; see also the velocity profile in Fig. 11). It has 
been hypothesised that, unlike in the previous two datasets, the HVAC system was shut down during 
the morning hours since the ambient temperature was around the room temperature. Because the 
model presumed that the HVAC was active during the whole operation period, its SoC and energy 
consumption predictions persistently changed, thus accumulating the offset during the morning 
pause. In order to check the above hypothesis, the HVAC submodel is shut down in the period from 
7 am to 10 am. The corresponding results shown in Fig. 12c indicate that the modelling accuracy is 
significantly improved when compared to the original response in Fig. 12b. A small offset is, though, 
still present in the SoC and energy consumption results around 10 am. 
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3.3 Physical model-based sensitivity analysis of e-bus energy consumption 

Once the e-bus model is successfully validated, it can be used as a basis for energy consumption 
sensitivity analysis for a wide range of scenarios and operating conditions. Only the SoC trajectory 
results are presented below since the energy consumption responses directly correlate with the SoC 
ones (see Fig. 12). 

3.3.1 Sensitivity analysis with respect to A/C state and ridership 

The sensitivity analysis of battery SoC trajectory is first conducted with respect to different A/C 
states (on | off | full) and bus ridership (zero | medium (40) | full (80) | varying), in order to reveal the 
impact of these operating parameters on the e-bus range. The results shown in Fig. 13 indicate that 
the ambient conditions (i.e., A/C load) and ridership (i.e., the bus load) significantly affect the energy 
consumption, as the final battery SoC can be anywhere between 20% and 70% after approximately 
9.5 h of operation. Accordingly, the e-bus range reduces from the extrapolated maximum value of 
255 km to 87.5 km, which is the reduction of around 65%. When expressed per kilometre of ride, the 
energy consumption reduces from 2.41 kWh/km to 0.87 kWh/km (Table 2). 

 

Fig. 13 SoC trajectories obtained for different levels of A/C and ridership load 
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Table 2 Specific energy consumptions for different levels of A/C and ridership load 

A/C state 
Passengers load 

Zero Medium Full Varying 

On 0.87 kWh/km 1.24 kWh/km 1.59 kWh/km 1.06 kWh/km 

Off 1.31 kWh/km 1.77 kWh/km 2.24 kWh/km 1.56 kWh/km 

 Full* 1.74 kWh/km 2.09 kWh/km 2.41 kWh/km 1.95 kWh/km 

 

3.3.2 Sensitivity analysis with respect to period of daily operation 

In order to gain insight into daily variation of the e-bus specific energy consumption, the simulation 
has been conducted over each individual trip along the day and separately for each driving direction. 
The model is reset to its nominal setting corresponding to actual (varying) A/C and ridership loads (as 
in Fig. 11). The obtained simulation and related recorded values of specific energy consumptions are 
shown in Fig. 14 for individual and combined driving directions. The same figure shows the 
corresponding average vehicle velocity data. The summarised results are plotted in Fig. 15. The results 
correspond only to actual driving missions, i.e. the dwelling periods at the end stations (and resulted 
A/C load) are disregarded. 

 

Fig. 14 Specific energy consumption values calculated per trip (and per direction) based on simulation 
results (a) and recorded data (b), and corresponding average values of recorded vehicle velocity (c) 
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Fig. 15 Simulated vs. recorded values of specific energy consumption (a) and simulated specific energy 
consumption vs. average vehicle velocity (b) 

The specific energy consumption varies significantly due to the effect of road slope (the consumption 
is lower for mostly downhill driving in Direction A, Fig. 14). The consumption variation is significant 
even for combined (two-way) trips (light green bar in Fig. 14a), which is due to due to the varying 
ambient, ridership and traffic conditions (cf. Fig. 3 and Fig. 14). The traffic condition influence is 
substantiated by clear correlation between the specific energy consumption and the average vehicle 
velocity, as shown in Fig. 14 and more clearly in Fig. 15b. The individual direction specific 
consumptions vary in the range from around 0.9 to 2.4 kWh/km, while for the two-way trips they fall 
in the range from 1.2 to 1.8 kWh/km. The good modelling accuracy is confirmed by fine agreement 
between the simulation-obtained and recorded value plots in Figs. 14a and 14b. This is better 
illustrated in Fig. 15a in terms of good alignment of simulation vs. recorded values with the ideal 1:1 
line. Quantitatively, the plot in Fig. 15a is represented by the Pearson's correlation coefficient of 0.95 
and the coefficient of determination is R2 = 0.85, which are quite close to the ideal value of 1. 

3.4 Data collection for data-driven e-bus modelling 

3.4.1 Data collection framework 

In the absence of a wide set of recorded e-bus energy consumption data, the framework depicted in 
Fig. 16 has been employed to generate the data needed for data-driven modelling. Initially, high-
sampling-rate (1 Hz) data were acquired for a 12m electric city e-bus operating across a day on several 
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routes in the City of Jerusalem. The acquired data were employed for parametrization and validation 
of a physical e-bus model running on the same 1 Hz sampling rate (Subsections 3.2 and 3.3). 

At the same time, low-sampling-rate (approx. around 0.25 Hz) data were collected from a fleet of 
around 300 conventional buses operating on 29 routes in Jerusalem over the period of one month. 
The recorded low-sampling-rate data were then transformed into the corresponding set of 
representative high-sampling-rate driving cycles corresponding to trips between two end stations. 
Those driving cycles were then fed to the developed physical e-bus model to obtain the energy 
consumption data. The transformation was based on the Markov chain synthesis method proposed 
in [7]. 

Finally, a wide set of trip-based statistical features (e.g., mean velocity, number of bus station stops, 
average ridership, trip duration, initial SoC, etc.) have been extracted from the synthetic driving cycles. 
They are paired with the physical model-based simulation data on energy consumption to form a 
dataset employed for the development of data-driven model in Subsections 3.5 and 3.6. 

 

Fig. 16 Illustration of data collection framework 
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3.4.2 Generation of extrapolation datasets  

In total, 4057 synthetic driving cycles were generated based on the Markov chain approach [7]. Each 
cycle was unique not only with respect to route (considering diverse road and traffic conditions, 
including varying road grades), but also with respect to time of trip (considering fluctuating traffic and 
ridership conditions). Additionally, each driving cycle had a distinct initial battery state of charge (SoC). 

To rigorously assess the extrapolation ability of the data-driven model (i.e., its generalization 
properties), four additional sets of driving cycles were derived from the basic set of synthetic driving 
cycles (Set #1): 

• Set #2: Faster and shorter trips: For each trip, the mean velocity of every bus station-to-station 
segment is amplified by 50%, and the travelled distances are randomly reduced. 

• Set #3: Flat roads: the road slope is set to zero. 
• Set #4: Steeper roads scenario: the road grade profile is scaled up by 50%. 
• Set #5: Faster trips: The mean velocity of each station-to-station segment is amplified by 50%. 

Fig. 17 shows histograms of the main driving cycles features for all the five individual datasets and a 
data set composed of the individual ones (an aggregate dataset). The corresponding histogram of 
powertrain energy consumption per trip is given, as well. When compared to the basic dataset #1, 
the modified datasets extend the range of features, thus making the aggregate dataset wider and 
flatter. 

 

Fig. 17 Distributions of main features of standard, modified, and aggregate driving cycle sets and 
corresponding distribution of powertrain energy consumption 
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3.5 Feature selection for data-driven e-bus powertrain modelling 

Feature selection is an integral component of machine learning and data analytics. It is aimed at 
enhancing the model accuracy and simplicity by identifying and retaining only the most relevant 
features. The presented feature selection method corresponds to e-bus powertrain (and auxiliary 
devices) modelling only, because HVAC modelling represents an independent and straightforward 
trip-based modification of the approach presented in Subsections 3.2 and 3.3 (see Subsection 3.6). 

3.5.1 Performance metrics and validation strategy 

Two metrics are employed to energy consumption model residuals to evaluate the modelling accuracy 
[8]: (i) root mean square error (𝑅𝑀𝑆𝐸) and (ii) coefficient of determination (𝑅2). To reduce the number 
of model inputs, the powertrain energy consumption is normalized with respect to travelled distance. 
The output predicted by such a normalized model (i.e., specific energy consumption in kWh/km) is in 
the final stage multiplied by the travelled distance to calculate the absolute energy consumption in 
kWh. The model performance metrics 𝑅2 and 𝑅𝑀𝑆𝐸 metrics are computed with respect to final model 
output, i.e. the absolute energy consumption. 

In the model evaluation, a five-fold cross-validation method has been applied to the basic dataset (Set 
#1, Subsection 3.4), as depicted in Fig. 18. The basic dataset is randomly partitioned into five sections, 
termed folds. In each iteration of this method, a single fold was designated for model validation, with 
the remaining four folds serving for training. This process yields individual scores 𝑅𝑡𝑟,𝑖

2  and 𝑅𝑣𝑎𝑙,𝑖
2 , i = 

1,...,5, for training and validation in each iteration, from which lumped/average scores 𝑅𝑡𝑟2  and 𝑅𝑣𝑎𝑙
2  

are derived (Fig. 18). 

In the sixth iteration, the model is trained on the whole (unpartitioned) basic dataset. The obtained 
model is then applied to the extrapolation datasets (Sets #2-#5), thus resulting in the validation scores 
𝑅𝑠,𝑗
2 , j = 2,...,5 (Fig. 18). Finally, the combined validation score 𝑅𝑡𝑜𝑡𝑎𝑙

2  is obtained from the residuals 

calculated by merging the predicted outputs from the validation iterations (𝑦̂𝑣𝑎𝑙,𝑖 for 𝑖 = 1,… 5) with 

the predicted values for the extrapolation sets (𝑦̂𝑠,𝑗 for 𝑗 = 2,… 5), and subtracting them with their 

true-value counterparts. The described validation process (Fig. 18) is applied when evaluating both 
𝑅2 and 𝑅𝑀𝑆𝐸 metrics. 
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Fig. 18 Schematic representation of model validation strategy 

3.5.2 Quadratic regression model 

Feature selection have been applied by using the following linear-in-parameter quadratic model: 

𝑦̂ = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋1
2 + 𝛽6𝑋2

2 + 𝛽7𝑋3
2 + 𝛽8𝑋4

2 + 𝛽9𝑋1𝑋2 + 𝛽10𝑋1𝑋3
+ 𝛽11𝑋1𝑋4 + 𝛽12𝑋2𝑋3 + 𝛽13𝑋2𝑋4 + 𝛽14𝑋3𝑋4, 

(3.9) 

where 𝑦̂ is the dependent variable (here specific powertrain consumption), 𝑋1, 𝑋2, … , 𝑋𝑛 are the 
predictor variables (with n = 4 in the example of Eq. (3.9)), 𝛽0 is the is the 𝑦-intercept parameter, and 

𝛽1, 𝛽2, … , 𝛽𝑚, 𝑚 = 2𝑛 +
𝑛(𝑛−1)

2
, are the model parameters corresponding to individual features. 

The considered predictor variables include (see the dark blue block in Fig. 16): total number of route 
stations 𝑁𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠, number of stations that the bus actually stopped at, 𝑁𝑠𝑡𝑜𝑝𝑠, ratio of stopping to total 

stations 𝜌𝑠𝑡𝑜𝑝𝑠 =
𝑁𝑠𝑡𝑜𝑝𝑠

𝑁𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠
, mean velocity 𝜇𝑣, average ridership 𝑛̅𝑝𝑎𝑠𝑠 and standard deviation of ridership 

𝜎𝑝𝑎𝑠𝑠 , trip duration 𝑡𝑡𝑟𝑖𝑝, trip distance 𝑑𝑡𝑟𝑖𝑝, initial state of charge 𝑆𝑜𝐶𝑖𝑛𝑖𝑡, mean road grade 𝜇𝑟𝑔, and 

standard deviation of road grades 𝜎𝑟𝑔. With this set of n = 11 predictor variables, the number of 

quadratic model features equals m = 77. 
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3.5.3 Feature selection  

LASSO (Least Absolute Shrinkage and Selection Operator) technique [9] applies a penalty to the 
absolute values of regression parameters 𝛽𝑖, 𝑖 = 1,… ,𝑚, thus encouraging parameters corresponding 
to non-influential features to diminish (see Fig. 19). This shrinkage mechanism is controlled by the 
penalty coefficient lambda λ. As λ grows, more model parameters converge to zero. 

 

Fig. 19 Illustration of LASSO feature selection technique in particular case of n = 11 predictor variables 
and m = 77 features of energy consumption quadratic regression model 

Random forest importance approach assigns importance scores to features based on their frequency 
in splitting data, indicating their contribution to the prediction accuracy. This relative feature 
importance is illustrated in Fig. 20. 

 

Fig. 20 Feature importance distribution as determined by Random forest importance analysis 

The quadratic regression model has been re-trained by sequentially adding individual features based 
on their significance ranking provided by LASSO and Random forest importance approaches. The 
results are shown in Fig. 21 based on the 𝑅𝑡𝑜𝑡𝑎𝑙

2  validation metrics introduced in Subsection 3.5.1. 
They indicate that the LASSO approach achieves peak performance with a smaller number of features 
compared to Random forest importance method. 
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Fig. 21 Comparative plots of aggregate R2 values for LASSO and random forest importance feature 

selection methods 

Wrapper methods are used in model optimization for systematic feature selection. These methods 
select the best feature subsets by building and evaluating models [9]. Forward feature selection, 
Backward feature elimination, and Stepwise regression are characteristic methods from this 
category. Each method identifies an optimal set of regression model features based on the Bayesian 
Information Criterion (𝐵𝐼𝐶): 

𝐵𝐼𝐶 = 𝑘 𝑙𝑛(𝜎2) + (𝑚 + 1)𝑙𝑛 (𝑘), (3.10) 

where 𝑚 + 1 represents the number of model parameters (including intercept), 𝑘 signifies the number 
of observations (sample size), and 𝜎2 represents the average of the squared differences between the 
observed values and the values predicted by the model, quantifying the model prediction error. A 
lower 𝐵𝐼𝐶 index suggests a better model fit. 

To determine the optimal set of features, with a focus on both performance and number of terms, 
specific thresholds for each method were fine-tuned. Forward Feature Selection begins with no 
features, and continues with progressively adding them based on model fit improvement until the 𝐵𝐼𝐶 
value increase surpasses a threshold of 100. Backward Feature Elimination begins with all features 
and removes them to improve the model, while stopping when the 𝐵𝐼𝐶 falls below the threshold of 
150. Stepwise Regression combines both methods, adjusting features based on fit with the threshold 
of 450 and the removal threshold of 400. 

Best subset method searches through all combinations of features to identify the optimal model 
subset. Due to the high computational demand, the number of predictor variables is reduced to 𝑛 = 4 
variables highlighted by feature selection results in Figs. 19 and 20: mean road grade, standard 
deviation of road grade, average number of passengers, and mean velocity. This leads to the quadratic 
regression model given by Eq. (3.9) and having 𝑚 = 14 features. Consequently, 16,383 distinct linear 
regression models can be produced. The performance of each model is depicted in Fig. 22 by a point, 
which gives the values of validation metrics 𝑅𝑡𝑜𝑡𝑎𝑙

2  and 𝑅𝑀𝑆𝐸𝑡𝑜𝑡𝑎𝑙 defined in Subsection 3.5.1. 
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Fig. 22 Best subset method validation results 

3.5.4 Comparative analysis of model gained by various feature selection methods 

Different feature selection methods presented in Subsection 3.5.3 yield multiple candidate feature 
sets, which are summarized in Table 3. Four candidate sets, including from 3 to 6 features, are 
identified by the Best Subset method as a good trade-off of modelling accuracy and simplicity (see 
Fig. 22a). Although the LASSO metrics peak is at 6 features, and Random Forest at 15, simpler sets 
close to these peaks are preferred, influenced by the Best Subset approach emphasis on fewer 
features. So, LASSO models with 4 and 5 features are selected in Table 3, while Random Forest 
highlights a 9-feature model (see marked sets in Fig. 21). The wrapper methods are represented by a 
single optimal configuration each. 

Out of the total of 10 configurations listed in Table 3, the four-feature one given by the best subset 
method (denoted in bold in Table 3 and marked in Fig. 22) has been selected for further analysis in 
Subsection 3.6. This is because its score 𝑅𝑡𝑜𝑡𝑎𝑙

2  = 0.9755 nearly matches the top score 𝑅𝑡𝑜𝑡𝑎𝑙
2  = 0.9763 

of the best-subset model with six features. Moreover, minimal variance in 𝑅2 (and 𝑅𝑀𝑆𝐸) among 
different data sets points to a consistent performance of the selected model, alongside with a good 
interpretability (e.g., there is only a single interaction term - the one between mean velocity and 
average ridership). 
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Table 3 Comparative performance metrics of optimal models obtained by various feature selection 
methods 

Number 
of 

features 
Selected features 𝑹𝒕𝒓

𝟐  
𝑹𝑴𝑺𝑬𝒕𝒓 

𝑹𝒗𝒂𝒍
𝟐  

𝑹𝑴𝑺𝑬𝒗𝒂𝒍 
𝑹𝒔,𝟐
𝟐  

𝑹𝑴𝑺𝑬𝒔,𝟐 
𝑹𝒔,𝟑
𝟐  

𝑹𝑴𝑺𝑬𝒔,𝟑 
𝑹𝒔,𝟒
𝟐  

𝑹𝑴𝑺𝑬𝒔,𝟒 
𝑹𝒔,𝟓
𝟐  

𝑹𝑴𝑺𝑬𝒔,𝟓 
𝑹𝒕𝒐𝒕𝒂𝒍
𝟐  

𝑹𝑴𝑺𝑬𝒕𝒐𝒕𝒂𝒍 

LASSO 

4 𝜇𝑟𝑔, 𝜎𝑟𝑔2 , 𝜇𝑣 ∗ 𝜇𝑟𝑔, 𝜇𝑣*𝑛̅𝑝𝑎𝑠𝑠 
0.9777 
0.8873 

0.9776 
0.8862 

0.9650 
0.8720 

0.9829 
0.5911 

0.9575 
1.5901 

0.9592 
1.2487 

0.9738 
1.0126 

5 𝜇𝑟𝑔, 𝜎𝑟𝑔2 , 𝜇𝑣*𝜇𝑟𝑔, 𝜇𝑣*𝑛̅𝑝𝑎𝑠𝑠, 𝑛̅𝑝𝑎𝑠𝑠*𝜇𝑟𝑔 0.9776 
0.8883 

0.9776 
0.8881 

0.9656 
0.8649 

0.9816 
0.6124 

0.9568 
1.6032 

0.9601 
1.2350 

0.9737 
1.0153 

Random Forest importance 

9 
𝜇𝑟𝑔, 𝜇𝑟𝑔2 , 𝜎𝑟𝑔*𝜇𝑟𝑔, 𝑁𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠*𝜇𝑟𝑔, 𝜇𝑣*𝜇𝑟𝑔, 
𝜇𝑣*𝑑𝑡𝑟𝑖𝑝, 𝑁𝑠𝑡𝑜𝑝𝑠*𝜇𝑣, 𝑛̅𝑝𝑎𝑠𝑠*𝜇𝑟𝑔, 𝜇𝑣*𝜎𝑟𝑔 

0.9752 
0.9346 

0.9750 
0.9381 

0.9645 
0.8783 

0.9312 
1.1850 

0.9374 
1.9290 

0.9576 
1.2731 

0.9621 
1.1896 

Forward selection 

8 
𝜇𝑟𝑔, 𝜇𝑣*𝑛̅𝑝𝑎𝑠𝑠, 𝜎𝑟𝑔2 , 𝜇𝑟𝑔2 , 𝜇𝑣*𝜇𝑟𝑔, 
𝑛̅𝑝𝑎𝑠𝑠*𝜇𝑟𝑔, 𝜎𝑟𝑔, 𝑡𝑡𝑟𝑖𝑝*𝜇𝑟𝑔 

0.9787 
0.8673 

0.9785 
0.8682 

0.9636 
0.8895 

0.8790 
1.5719 

0.9625 
1.4927 

0.9556 
1.3017 

0.9638 
1.1652 

Backward Elimination 

10 
𝜇𝑟𝑔, 𝜇𝑣2, 𝜇𝑣*𝑛̅𝑝𝑎𝑠𝑠, 𝜇𝑣*𝜎𝑟𝑔, 𝜇𝑣*𝜇𝑟𝑔, 𝑛̅𝑝𝑎𝑠𝑠*𝜇𝑟𝑔, 

𝑛̅𝑝𝑎𝑠𝑠*𝑆𝑜𝐶𝑖𝑛𝑖𝑡, 𝜎𝑝𝑎𝑠𝑠*𝜎𝑟𝑔, 𝜎𝑟𝑔2 , 𝜇𝑟𝑔2  
0.9781 
0.8787 

0.9780 
0.8788 

0.9656 
0.8640 

0.9464 
1.0462 

0.9617 
1.5088 

0.9571 
1.2799 

0.9710 
1.0761 

Stepwise Regression 

6 𝜇𝑟𝑔, 𝜇𝑣*𝑛̅𝑝𝑎𝑠𝑠, 𝜎𝑟𝑔2 , 𝜇𝑟𝑔2 , 𝜇𝑣*𝜇𝑟𝑔, 𝑛̅𝑝𝑎𝑠𝑠*𝜇𝑟𝑔 0.9783 
0.8755 

0.9782 
0.8750 

0.9647 
0.8757 

0.9840 
0.5719 

0.9660 
1.4222 

0.9569 
1.2825 

0.9760 
0.9839 

Best Subset 

3 𝜇𝑟𝑔, 𝜎𝑟𝑔2 , 𝜇𝑣*𝑛̅𝑝𝑎𝑠𝑠 
0.9778 
0.8860 

0.9777 
0.8849 

0.9662 
0.8567 

0.9828 
0.5923 

0.9574 
1.5919 

0.9591 
1.2504 

0.9739 
1.0104 

4 𝝁𝒓𝒈, 𝝁𝒓𝒈𝟐 , 𝝈𝒓𝒈𝟐 , 𝝁𝒗*𝒏̅𝒑𝒂𝒔𝒔 
0.9784 
0.8727 

0.9784 
0.8721 

0.9639 
0.8855 

0.9825 
0.5978 

0.9666 
1.4091 

0.9546 
1.3161 

0.9755 
0.9922 

5 𝜇𝑟𝑔, 𝜇𝑟𝑔2 , 𝜇𝑟𝑔*𝜎𝑟𝑔, 𝜎𝑟𝑔2 , 𝜇𝑣*𝑛̅𝑝𝑎𝑠𝑠 
0.9786 
0.8694 

0.9785 
0.8690 

0.9642 
0.8817 

0.9821 
0.6047 

0.9681 
1.3774 

0.9547 
1.3153 

0.9759 
0.9862 

6 𝜇𝑟𝑔, 𝑛̅𝑝𝑎𝑠𝑠, 𝜇𝑟𝑔2 , 𝜇𝑟𝑔*𝜇𝑣, 𝜎𝑟𝑔2 , 𝜇𝑣2 0.9781 
0.8782 

0.9781 
0.8782 

0.9666 
0.8521 

0.9823 
0.6010 

0.9662 
1.4178 

0.9582 
1.2630 

0.9763 
0.9817 

Note: All 𝑹𝑴𝑺𝑬 values are given in kWh. 
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3.6 Trip-based data-driven e-bus model 

In Subsection 3.5, powertrain model features were selected (see Table 3), and the model was trained 
and validated on the basic dataset and then tested on four separate (extrapolation) datasets. Herein, 
a combined/aggregate dataset (see Fig. 17) is used for both training and validation (the 
training/validation folds in Fig. 18 are taken from the aggregate dataset). This approach aims to 
improve the modelling accuracy and allows for a direct performance comparison between the linear 
regression model and more complex machine learning algorithms, which often perform well at 
interpolation but face challenges with extrapolation. The training and validation metrics 
( 𝑅𝑡𝑟2 ,  𝑅𝑣𝑎𝑙

2 , 𝑅𝑀𝑆𝐸𝑡𝑟 , 𝑅𝑀𝑆𝐸𝑣𝑎𝑙) are obtained by using 5-fold cross-validation, as illustrated in Fig. 18. 

3.6.1 Powertrain model 

Training of the quadratic regression model, selected in Subsection 3.5 (see bold row of Table 3) and 
given by: 

𝐸𝑝𝑡

𝑑𝑡𝑟𝑖𝑝
= 𝛽0 + 𝛽1 𝜇𝑟𝑔 + 𝛽2 𝜇𝑟𝑔

2 + 𝛽3 𝜎𝑟𝑔
2 + 𝛽4 𝜇𝑣𝑛̅𝑝𝑎𝑠𝑠, (3.11) 

on the aggregate dataset yields the performance metrics listed in the first row of Table 4. These 
metrics are nearly identical to the one listed in Table 3, thus highlighting the model robustness and 
generalizability. 

To potentially improve the modelling accuracy, alternative machine learning algorithms were 
evaluated on the aggregate dataset and compared with the quadratic regression model (3.11). Most 
of these algorithms are set to use the individual predictor variables rather than quadratic and 
interaction terms/features present in the model (3.11) (see second column of Table 4). This is because 
these advanced algorithms should automatically detect/realize inherent interactions between 
individual predictor variables. 

The evaluated machine learning algorithms and their main design parameters are summarized in what 
follows. 

1. LASSO Regression: The parameter λ is set in the range from 0.0001 to 0 with increments of 
0.00001. 

2. Ridge Regression: The parameter λ is varied in the same range as for LASSO Regression. 
3. Decision Trees: The maximum depth parameter ranges from 10 to 100, with increments of 1. 
4. Random Forest: The number of estimators is in the range from 4 to 200, with increments of 1. 
5. Gradient Boosting: The number of estimators is set in the same way as with Random forest 

method. 
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6. K-nearest Neighbours: The algorithm is set with neighbours ranging from 1 to 200. 
7. Support Vector Regression: Various kernels, including Radial Basis Function, and 1st-, 2nd-, and 

3rd-order polynomial are examined. 
8. Multilayer Perceptron (MLP) Neural Networks: The number of layers and nodes varies from 1 to 

4 and 16 to 512, respectively. 
9. 1D Convolution Neural Networks: The same architecture parameters are considered as with 

MLP neural network, all with the stride of 1. 

Table 4 displays the best-performing configurations for each algorithm. Evidently, the advanced 
regression techniques do not considerably surpass the quadratic regression model when the 
validation performance is concerned, which is evidenced by the 𝑅𝑣𝑎𝑙

2  index differing only at the third 
decimal place. Moreover, the advanced techniques typically perform poorly when tested on 
extrapolation datasets (see, e.g., results for high-order models in Table 3). So, even when the advanced 
models are trained on the aggregate dataset as done in Table 4, they may considerably underperform 
the quadratic regression model for real-world scenarios not fully captured by the aggregated dataset. 
Hence, due to its simplicity and strong performance, the quadratic regression model is recommended 
in applications. 

It has been demonstrated in Table 3 and 4 that the regression model is characterised by a high R2 
score on different sets of seen and unseen data (at least 0.97, meaning that 97% of the variability in 
the dependent variable can be explained by the predictor (independent) variables). In an attempt to 
analyse the possible root causes of the remaining modelling errors and potentially enhance the model 
performance, additional features have been derived from the driving cycles used in the model 
development phase. In addition to the four selected predictor variables (see Table 4), the mean 
positive (𝜇𝑎+) and negative (𝜇𝑎−) accelerations, as well as their standard deviations (𝜎𝑎+ , 𝜎𝑎−) and the 
standard deviation of velocity (𝜎𝑣) are employed as influential variables related to vehicle dynamics. 
By using this extended set of predictor variables, an MLP neural network model with four hidden 
layers has been implemented. 
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Table 4 Comparative performance metrics of different machine learning algorithms using previously 
selected features 

Number of 
features 

Features/              
Predictor variables 

𝑹𝑴𝑺𝑬𝒕𝒓 [𝐤𝐖𝐇] 𝑹𝑴𝑺𝑬𝒗𝒂𝒍 [𝐤𝐖𝐡] 𝑹𝒕𝒓
𝟐  𝑹𝒗𝒂𝒍

𝟐  

Quadratic Regression  

4 𝝁𝒓𝒈, 𝝁𝒓𝒈𝟐 , 𝝈𝒓𝒈𝟐 , 𝝁𝒗*𝒏̅𝒑𝒂𝒔𝒔 0.9922 0.9922 0.9756 0.9756 

LASSO Regression 

4 𝝁𝒓𝒈, 𝝁𝒓𝒈𝟐 , 𝝈𝒓𝒈𝟐 , 𝝁𝒗*𝒏̅𝒑𝒂𝒔𝒔 0.9922 0.9922 0.9756 0.9756 

RIDGE Regression 

4 𝝁𝒓𝒈, 𝝁𝒓𝒈𝟐 , 𝝈𝒓𝒈𝟐 , 𝝁𝒗*𝒏̅𝒑𝒂𝒔𝒔 0.9922 0.9922 0.9756 0.9756 

Decision Trees 

4 𝝁𝒓𝒈, 𝝈𝒓𝒈, 𝝁𝒗, 𝒏̅𝒑𝒂𝒔𝒔 0.0079 1.3208 1.0000 0.9558 

Random Forest 

4 𝝁𝒓𝒈, 𝝈𝒓𝒈, 𝝁𝒗, 𝒏̅𝒑𝒂𝒔𝒔 0.3518 0.95 0.9969 0.9771 

Gradient Boosting 

4 𝝁𝒓𝒈, 𝝈𝒓𝒈, 𝝁𝒗, 𝒏̅𝒑𝒂𝒔𝒔 0.9124 0.9399 0.9789 0.9776 

K-nearest Neighbors 

4 𝝁𝒓𝒈, 𝝈𝒓𝒈, 𝝁𝒗, 𝒏̅𝒑𝒂𝒔𝒔 0.8868 0.9828 0.9801 0.9760 

Support Vector Regression 

4 𝝁𝒓𝒈, 𝝈𝒓𝒈, 𝝁𝒗, 𝒏̅𝒑𝒂𝒔𝒔 0.9448 0.9477 0.9774 0.9772 

MLP Neural Networks 

4 𝝁𝒓𝒈, 𝝈𝒓𝒈, 𝝁𝒗, 𝒏̅𝒑𝒂𝒔𝒔 0.9450 0.9473 0.9774 0.9772 

1D Convolution Neural Networks 

4 𝝁𝒓𝒈, 𝝈𝒓𝒈, 𝝁𝒗, 𝒏̅𝒑𝒂𝒔𝒔 0.9581 0.9582 0.9767 0.9767 
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The corresponding modelling results shown in Table 5 indicate that the validation index 𝑅𝑣𝑎𝑙
2  increases 

from 0.9772 to 0.9890. This reveals that (i) the limited performance of the models from Table 4 is 
more because of the limited set of features than the limited model structure, and (ii) the model with 
trip-based features can closely match the original, high-sampling-rate physical model, provided that 
the trip-based feature set is rich enough. However, despite the commendable performance, practical 
application of the model based on the additional, acceleration-based features is constrained by limited 
data availability. Namely, the typical bus tracking data are sampled too slowly to consistently capture 
the fast transients of vehicle acceleration signals. Hence, the quadratic regression model (3) remains 
to be recommended for application due to low data demands, simplicity, and still favourable accuracy 
(Table 5). 

Table 5 Comparison of model performance with enhanced feature set 

Number of 
features 

Features/              
Predictor variables 

𝑹𝑴𝑺𝑬𝒕𝒓 
[kWh] 

𝑹𝑴𝑺𝑬𝒗𝒂𝒍 
[kWh] 𝑹𝒕𝒓

𝟐  𝑹𝒗𝒂𝒍
𝟐  

Quadratic Regression 

4 𝝁𝒓𝒈, 𝝁𝒓𝒈𝟐 , 𝝈𝒓𝒈𝟐 , 𝝁𝒗*𝒏̅𝒑𝒂𝒔𝒔 0.9922 0.9922 0.9756 0.9756 

MLP Neural Networks 

4 𝝁𝒓𝒈, 𝝈𝒓𝒈, 𝝁𝒗, 𝒏̅𝒑𝒂𝒔𝒔 0.9450 0.9473 0.9774 0.9772 

9 
𝝁𝒓𝒈, 𝝈𝒓𝒈, 𝝁𝒗, 𝒏̅𝒑𝒂𝒔𝒔,  

𝝈𝒗, 𝝁𝒂+ , 𝝁𝒂− , 𝝈𝒂+ , 𝝈𝒂−  
0.6994 0.6996 0.9892 0.9890 

 

3.6.2 HVAC system model 

The HVAC power consumption regression model developed and indirectly experimentally validated 
within the physical e-bus model (Subsection 3.2) has a quadratic form gained by a feature selection 
method for four inputs: ambient temperature 𝑇𝑎, solar irradiation 𝑄̇𝑠𝑜𝑙, ridership 𝑛𝑝𝑎𝑠𝑠, and vehicle 

velocity 𝑣𝑣𝑒ℎ: 

𝑃𝐻𝑉𝐴𝐶 = 𝛽0 + 𝛽1𝑇𝑎 + 𝛽2𝑄̇𝑠𝑜𝑙 + 𝛽3𝑛𝑝𝑎𝑠𝑠 + 𝛽4𝑣𝑣𝑒ℎ + 𝛽5𝑇𝑎𝑣𝑣𝑒ℎ + 𝛽6𝑄̇𝑠𝑜𝑙
2 , (3.12) 

For integration into the trip-based data-driven model, the features of the HVAC model are averaged 
on a per-trip basis. This modification is justified by two assumptions: (i) the ambient conditions, such 
as solar irradiation and temperature, remain approximately constant during a relatively short bus trip, 
and (ii) the velocity and ridership variables, which may significantly change during the trip, are of 
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secondary influence on the HVAC consumption when compared to the influence of ambient condition 
variables. To further suppress the influence of velocity and ridership variations on mean value model 
accuracy, it is good to avoid the nonlinear terms present in model (3.12). It has been shown that this 
intervention does not considerably deteriorate the accuracy of physical model, but notably improves 
the accuracy of the mean value model, which is, thus, formulated as: 

 𝑃𝐻𝑉𝐴𝐶 = 𝛽0 + 𝛽1𝑇̅𝑎 + 𝛽2𝑄̅̇𝑠𝑜𝑙 + 𝛽3𝑛̅𝑝𝑎𝑠𝑠 + 𝛽4𝜇𝑣, (3.13) 

where the mean predictor variables are calculated over the trip, i.e., the driving cycle. The HVAC 
energy consumption per trip is then determined as: 

𝐸𝐻𝑉𝐴𝐶 = 𝑡𝑡𝑟𝑖𝑝𝑃𝐻𝑉𝐴𝐶 , (3.14) 

where 𝑡𝑡𝑟𝑖𝑝 is the trip duration. 

The mean value HVAC model (3.14) has been tested against the original model (3.12) by using the 
five-fold cross-validation method illustrated in Fig. 18. The corresponding 𝑅𝑣𝑎𝑙

2  value is 0.999 and an 
𝑅𝑀𝑆𝐸𝑣𝑎𝑙 is only 0.128 kWh. This confirms that the mean value HVAC system model can be used with 
a negligible loss of accuracy. 

3.6.3 Analysis of model residuals 

A practical analysis of the model residuals is carried out separately for powertrain and HVAC models, 
as well as for the full vehicle model. The analysis results relate to the validation dataset aggregated 
from validation folds in Fig. 18. 

Powertrain model. An essential step in evaluating regression models involves examining the spread 
of residuals against the predicted values, which should be distributed around a horizontal zero-value 
line without forming any distinct patterns [10]. The residual plot of the powertrain quadratic 
regression model from Table 4 is shown in Fig. 23a. It indicates a slight slope of -0.015 kWh/kWh 
around the zero-value line, thus confirming the model consistency. Fig. 23b shows that the model 
predictions scatter closely around the ideal, identity line. 
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Fig. 23 Powertrain model residuals plotted vs. predicted values (a) and model predicted vs. true value plot 
(b) 

The normality of residuals is another model assessment criterion. Fig. 24a demonstrates that, despite 
the p-value being lower than the normality threshold, the residuals exhibit an unbiased, symmetric 
distribution resembling the normal distribution. The distribution of relative residuals, shown in Fig. 
24b, indicate that a great majority of relative residuals (actually 90% of them, see Table 6) fall below 
the margin of 8%. The Q-Q plot in Fig. 24c provides further illustration of the residual distribution 
normality by plotting the residuals in a manner that should form a straight line if they are normally 
distributed. Fig. 24d shows a heat plot of the residual versus true value. It reveals that the higher 
relative residuals are associated with lower predicted values, which is apparently due to the nature of 
relative residual calculation that tends to be more sensitive to smaller values. Table 6 provides a 
summarized residual statistic. 

Table 6 Characterization of absolute and relative residual distributions of powertrain model 

 Mean Std. 1% 5% 10% 15% 25% 50% 75% 85% 90% 95% 99% 

Absolute [kWh] -0.06 0.85 -2.31 -1.43 -1.02 -0.78 -0.47 -0.06 0.31 0.62 0.87 1.35 2.56 

Relative [%] -0.50 6.93 -18.70 -11.51 -8.52 -6.75 -4.43 -0.45 3.46 5.87 7.65 10.72 17.83 

 

 



OLGA_D2.1_SoftwareSolution_ebusTransportElectrification_TransportSystemOptimization_v1.docx 

 

 

 

Confidential: This document is property of the OLGA Consortium and shall not be distributed or reproduced  
without the formal approval of the Consortium 

     47/118 
 

 

Fig. 24 Characteristic powertrain model residual plots 

HVAC model. Fig. 25 shows the main residual plots of the HVAC model given by Eqs. (3.13) and 
(3.14), while the corresponding statistics is given in Table 7. The 90% of residuals fall below the 
absolute and relative margins of 0.16 kWh or 3.74%, respectively, which confirms the good modelling 
accuracy. 

 

Fig. 25 HVAC model predicted vs. true value plot (a) and corresponding relative residual distribution plot 
(b) 
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Table 7 Characterization of absolute and relative residual distributions for HVAC model 

 Mean Std. 1% 5% 10% 15% 25% 50% 75% 85% 90% 95% 99% 

Absolute [kWh] 0.02 0.11 -0.25 -0.16 -0.09 -0.05 -0.02 0.01 0.06 0.11 0.16 0.25 0.37 

Relative [%] 0.85 2.05 -2.86 -2.05 -1.64 -1.29 -0.51 0.52 2.09 3.19 3.74 4.48 6.28 

 

Full model. Fig. 26 shows the residual analysis results for the full e-bus model (both powertrain and 
HVAC models). The relative residual distribution is narrower than for the powertrain model itself (cf. 
Figs. 26b and 24b) due the accuracy contribution of the HVAC submodel. Consequently, the score 
𝑅𝑣𝑎𝑙
2  of the full model (when validated on the aggregate dataset) lifts from the powertrain model 

validation value of 0.9756 (Table 4) to 0.9812. 

 

Fig. 26 Full e-bus model predicted vs. true value plot (a) and corresponding relative residuals distribution 
plot (b) 

3.7 Short conclusion 

A data-driven regression model for predicting the electric city bus battery energy consumption has 
been built up. The model has been parameterized and validated based on a comprehensive data set 
obtained by simulating an experimentally validated physical model over a wide set of naturalistic city 
bus driving cycles. The model relies on typically available trip-related data, as opposed to the physical 
model that requires high sampling rate driving cycle data. It consists of independent powertrain and 
HVAC submodels. For the powertrain, a feature selection method has been used to find an optimal 
quadratic regression model for the specific energy consumption (in kWh/km), where the selected 
features include the mean road grade and its square, the road grade standard deviation square, and 
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the product of mean velocity and ridership. The model performance (characterized by the validation 
𝑅2 value of 0.976) is comparable with more complex methods such as neural networks and gradient 
boosting, but with the added advantage of greater simplicity and robustness. 

The original HVAC system model with four inputs (ambient temperature, solar irradiance, vehicle 
velocity, and ridership) has been reformulated to have (i) a mean value form to be applicable to trip-
based inputs and (ii) a linear structure to suppress the influence of velocity and ridership variation on 
the mean value modelling accuracy. When validating the full model on an aggregate dataset, it 
registered a notable 𝑅2 score of 0.981, thus confirming its capability to accurately describe the energy 
consumption patterns. 

The developed e-bus model provides a solid basis for accurate and computationally efficient 
description and simulation of city bus fleets for electrification planning purposes. The presented 
approach of modelling the 12m fully electric city bus can be applied to other bus sizes (e.g., 18m) and 
types of city buses (e.g., HEV, PHEV, and H2 buses). 

4 Charging configuration optimization 

4.1 Introduction 

An integral part of the transport system electrification planning is optimization of charging 
configuration. When concerning an e-bus transport system, charging configuration optimization aims 
at selecting terminals to serve as fast charging stations and selecting the number of chargers per each 
terminal to minimize investment cost and service delay. 

To this end, this section deals with city bus fleet charging configuration optimization resulting in the 
optimal selection of charging terminals and the number of chargers installed on those terminals. The 
charging terminals are selected for (i) the predefined e-bus fleet defined by the number of buses, bus 
type, and battery capacity and (ii) predefined bus lines, schedules, and timetables. The optimization 
objectives to be minimized include the number of charging terminals, the total number of chargers, 
and the total (cumulative) service delay with respect to timetables. The optimization is based on the 
pilOPT multi-objective genetic algorithm (GA) provided in the modeFRONTIER optimization 
environment, which is connected with a transport system macro-simulation model implemented in 
programming language Python. To reduce the input space represented by the number of chargers on 
different terminals, and thus improve convergence properties of the GA, the modified greedy set-
cover algorithm is developed and used in pre-optimization. To illustrate the effectiveness of the 
proposed method/tool, the optimized charging configurations are compared with near-optimal 
charging configurations previously found through expert knowledge. 
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The charging configuration optimization tool is demonstrated on a real city bus transport system 
corresponding to 29 lines/routes, 25 terminals, and 303 buses operating in the city of Jerusalem [7]. 
The transport system macro-simulation model is built based on real-life travelling time and terminal 
dwell time data for every route and direction on an hourly basis throughout the operating day. These 
data have been retrieved from the GPS tracking data collected on the existing (Diesel) bus fleet 
operating on the given routes. The transport system model also includes the energy consumption 
maps for e-buses, which have been determined by simulating the physical e-bus model from Section 
3 over the high-resolution driving cycle data. The driving cycle relates to the peak day in view of 
traffic load and weather conditions, thus concerning the worst-case scenario of powertrain and HVAC 
system energy consumption, respectively. 

The remaining part of this section is structured as follows. Subsection 4.2 provides an overview of 
the optimization framework. Subsection 4.3 describes the transport system macro-simulation model 
used to simulate the city bus fleet. Greedy algorithm-based optimization of charging locations used 
for search space reduction is described in Subsection 4.4. Subsection 4.5 presents the overall charging 
system configuration optimization algorithm, with the results given and discussed in Subsection 4.6. 
Subsection 4.7 presents concluding remarks. 

Note: The work presented in this section has been disseminated through the following conference 
paper, which also includes a methodology state-of-the-art review and elaborates on the contributions 
of the approach proposed: 

D. Matković, J. Topić, B. Škugor, and J. Deur, “Search Space Reduction-Supported Multi-objective 
Optimization of Charging System Configuration for Electrified City Bus Transport System”, 17th Conference 
on Sustainable Development of Energy, Water and Environment Systems (SDEWES), Paphos, Cyprus, 2022. 

4.2 Optimization framework 

This subsection provides an overview of the optimization framework shown in Fig. 27 and aimed to 
determine the optimal charging configuration for an e-bus transport system. The optimization 
framework consists of (i) a modeFRONTIER optimization tool based on the pilOPT algorithm and (ii) 
a macro-simulation model of the transport-energy system that is run in Python in every optimization 
iteration. First, the design of experiments (DOE) is defined, which sets the initial charging 
configuration and is generated by pilOPT algorithm. The number of chargers at each terminal is 
denoted by Chi, i = 1,...,n, where the subscript i denotes the terminal index and n is the number of 
terminals. It is requested that the minimum number of chargers per charging terminal is Nch,min = 2, 
while the maximum number of chargers is equal to the number of buses Nb coming to the terminal. 
This is implemented through the constraint Nch,min ≤ Chi ≤ Nb, with the note that if a terminal has no 
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chargers installed, the number of chargers Chi is set to 0. The second constraint, RCr ≥1 is related to 
the number of charging terminals RCr placed at a bus route (or line) r ∈ [1, Nr], where Nr is the number 
of routes. There are three objectives to be minimized, which are denoted by Ji, i ∈ [1, 3] (see Fig. 27), 
and which relate to the total number of chargers (Nc), the total number of charging terminals (Nct) and 
the total time delay for all buses' departures during the single-day operation (Dtot) affected by charging 
constraints, where Nc and Nct are calculated directly from the optimized charging configuration, and 
Dtot is obtained from macro-simulation. The charging configuration is represented by the set [Ch1,..., 

Chn], i.e. by the number of installed chargers at every terminal. The macro-simulation model 
parameters include the bus schedule set, S, a deadzone time, Tdz, the charging power, Pch, and the e-
bus battery energy capacity, Ebatt. The deadzone time Tdz is the minimum time the bus should spent at 
the charging terminal to start charging, representing the time needed to park to the charger spot and 
plug in the charger. 

 

Fig. 27 Block diagram of optimization framework used for optimizing charging configuration 

The optimization algorithm iteratively generates a charging configuration used as an input to the 
macro-simulation model, which simulates the driving missions over the peak-load day based on the 
specified simulation parameters. The simulation results are used in the optimization algorithm to 
generate a new charging configuration to minimize the objective functions including the number of 
charging terminals, the total number of chargers, and the total bus delay time affected by prolongated 
bus departure due to the charging waits, subject to optimization constraints. 



OLGA_D2.1_SoftwareSolution_ebusTransportElectrification_TransportSystemOptimization_v1.docx 

 

 

 

Confidential: This document is property of the OLGA Consortium and shall not be distributed or reproduced  
without the formal approval of the Consortium 

     52/118 
 

4.3 Transport system macro-simulation model 

The macro-simulation model describes the city bus transport and energy system on a daily basis and 
with a time step of one minute. It simulates a bus fleet containing 303 buses allocated to 29 routes 
and 25 terminals in a part of the city of Jerusalem. Each bus operates only on one of the routes. 
Simulation outputs are post-processed to obtain detailed transport analysis data for every route and 
bus, including the dwell time at each terminal, the delay time of driving missions, and a variety of 
metrics regarding the battery state of charge (SoC; actually a state of energy), energy charged, and 
bus utilization. 

Fig. 28 overviews the macro-simulation model in the form of a flowchart. In every sampling instant 
(with a sampling time of 1 minute) the algorithm checks the scheduled departure and arrival time for 
driving missions (service trips). A trip is allocated to the bus with the largest battery SoC (from the set 
of buses assigned to that route), while considering the constraint that the bus cannot leave the 
terminal (if equipped with chargers) if SoC < 20%. If there is no bus with SoC ≥ 20% at the charging 
terminal, the departure is postponed, i.e. a delay occurs. The trip travel time and the energy 
consumption are obtained from the corresponding maps, which have been determined (i.e., pre-
processed) from the recorded driving cycle data and the e-bus physical micro-simulation, and they 
are stored in a database over different routes and on an hourly basis. The bus battery SoC is updated 
at the end of a trip in accordance with the energy consumption of the driving mission (including the 
HVAC system energy consumption which depends on the external ambient conditions, i.e. the time 
of the day). After the bus arrives at the terminal, a simple heuristic charging management algorithm is 
executed. 

The charging management algorithm is described by the flowchart shown in Fig. 29. First, when a bus 
arrives at the terminal equipped with chargers, it gets connected to the unused charger if there is any. 
If all chargers are occupied, the bus with the largest SoC gets disconnected, but only if its SoC is 
greater than the SoC of the arrived bus. When the bus battery is fully charged (SoC = 95%) or a bus 
with SoC ≥ 20% is scheduled to depart, the bus disconnects from the charger, and the bus with the 
lowest SoC connects. 
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Fig. 28 Flowchart of macro-simulation model 

 

 

Fig. 29 Flowchart of heuristic charging management algorithm 
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4.4  “Greedy algorithm” based optimization of charging locations 

The e-bus transport system includes 25 terminals, which may or may not include chargers (two 
options), which results in 225 = 33,554,432 possible charging configuration combinations. Thus, it 
would be very time-consuming to manually find viable charging configuration combinations to be 
used in full optimization in Subsection 4.5, while considering the route coverage constraint meaning 
that every route has at least one charging terminal. Therefore, a modified greedy set-cover algorithm 
for charging terminal candidates’ optimization is proposed in this subsection. The search space is 
reduced by decreasing the number of input variables, in this case the charging terminal candidates, 
otherwise set to all terminals. 

4.4.1 Charging candidate problem 

The charging terminal candidate problem is defined as finding the minimum number of charging 
terminals while considering the route coverage constraint. Since there may be more distinct 
configurations with the same minimum number of charging terminals, the charging candidate problem 
should cover all those minimum configurations. For this purpose, a modified greedy set-cover 
algorithm is designed. The final reduced input space or reduced charging candidate set is determined 
as the union of charging terminals in all configurations obtained from the modified greedy set-cover 
algorithm. 

Since the greedy algorithm for the set-cover problem presented in [11] returns only one solution, 
while the charging candidate problem should ultimately return all charging configurations with the 
minimum number of charging terminals satisfying the route coverage constraint, a modified greedy 
algorithm is proposed. The details are given in the next subsection. 

4.4.2 Modified greedy set-cover algorithm for charging candidate optimization 

The mathematical formulation of the set-cover problem is as follows: 

Given the elements of 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛}, 

Subsets 𝑆1, 𝑆2, … , 𝑆𝑘 ⊆ 𝑈 ,          (4.1) 

Weights 𝑤1, 𝑤2, … , 𝑤𝑘, 

find  𝐼 ⊆ {1, 2, … , 𝑘} , 

that min ∑ 𝑤𝑖𝑖∈𝐼 , s.t. ⋃ 𝑆𝑖𝑖∈𝐼
= 𝑈. (4.2) 
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The greedy set-cover algorithm is shown in Algorithm 1 below and is described in [11]. It executes in 
the following steps: (i) initializes empty array of selected subsets 𝑆1, 𝑆2, … , 𝑆𝑘, (ii) iterates while the 
array of selected subsets does not contain all elements from set 𝑈 and, in every iteration, it selects 
the subset with the smallest cost. The cost function is the ratio between the subset cost and the 
number of elements contained in a subset, not added in the array of selected subsets. The subset 
weight is predefined, and it depends on the system, where sometimes it may be the same for all 
subsets, but it may also be diverse. 

 

The proposed, modified greedy set-cover algorithm is a version of the original algorithm, where the 
modifications relate to ultimately returning all possible combinations of configurations with the 
minimum number of charging terminals and adapting the cost function according to the bus transport 
system. The mathematical formulation of the modified set-cover problem is the same as for the set-
cover problem, as given by Eqs. (4.1) and (4.2), while the programming implementation has a few 
modifications, as given by Algorithm 2 below. 

Algorithm 2 executes in a dynamically chosen number of iterations, and it runs as follows: (i) it 
initializes an empty set of generated configurations, (ii) starts iteration and stops when no new 
combination or configuration is found for at least 20 iterations, and (iii) in every step it generates 
weights for every subset; in this case, the subset is represented as a set of routes covered with every 
terminal, (iv) for previously generated weights, the algorithm iterates and builds new configuration 
based on the cost function that prioritizes the terminals that cover more routes in total and more of 
the uncovered routes, scaling it with the weights 𝑤1, 𝑤2, … , 𝑤𝑘, (v) when no configuration is generated 
for at more than 20 iterations, the algorithm returns charging configurations with the minimum 
number of charging terminals. The cost function is the ratio of the sum of the total number of routes 



OLGA_D2.1_SoftwareSolution_ebusTransportElectrification_TransportSystemOptimization_v1.docx 

 

 

 

Confidential: This document is property of the OLGA Consortium and shall not be distributed or reproduced  
without the formal approval of the Consortium 

     56/118 
 

covered by the terminal and uncovered routes divided by the terminal weight value. The weights are 
generated by using Gaussian distribution with the mean value 𝜇 equal to 3 and the standard deviation 
𝜎 equal to 1. These values are empirically chosen to introduce randomness to the cost function, i.e. 
to generate distinct weights 𝑤1, 𝑤2, … , 𝑤𝑘, in every iteration resulting in more charging combinations. 
In the case of the same weights in every iteration, the algorithm would result in one configuration 
combination. 

 

4.4.3 Charging candidate optimization results 

Fig. 30 shows the assignment of terminals to the routes of considered city bus system. The goal is to 
find the minimum charging configuration combinations satisfying the route coverage constraint 
meaning that each route is covered by at least one charging terminal (Subsection 4.2). 
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Fig. 30 Route and belonging terminals of the considered city bus system 

Table 8 shows the combinations of minimum charging configurations found (i) “manually” based on 
expert knowledge and (ii) using the proposed modified greedy set-cover algorithm. Only one 
combination of charging configurations with the minimum number of charging candidates was 
succeeded to be found manually, while the modified greedy set-cover algorithm has managed to find 
four distinct combinations, including the manually found one. The reduced input space-based 
optimizations (Subsection 4.5) consider the union of charging terminals determined by the greedy set-
cover algorithm (marked green in Table 8). That said, the number of input variables (set by default to 
[Ch1,...,Chn] in Fig. 27), i.e. terminals decreases from n = 25 to 10, which is a significant improvement 
in terms of search space reduction. 

The modified set-cover greedy algorithm has proven to be a computationally efficient space reduction 
approach, as its execution time for the given, relatively large transport system takes only 7 ms on the 
processor Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz and installed RAM with 8.00 GB. 
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Table 8 Charging candidate optimization results obtained by expert knowledge (i.e, 'manually') and 
application of modified greedy set-cover algorithm 

 

4.5 Optimization of overall charging system configuration 

This subsection presents details of the overall, multi-objective optimization framework built around 
modeFRONTIER genetic algorithm pilOPT. Fig. 31 shows the modeFRONTIER optimization scheme, 
which includes inputs that represent charging configuration (marked green), and outputs that are used 
in constraints and objective functions evaluation (marked red). The next subsections explain in detail 
each component of the optimization scheme. 

 

Fig. 31 modeFRONTIER scheme of overall charging configuration optimization 
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4.5.1 Objective functions 

As outlined in Subsection 4.2, the considered objective functions to be minimized include the total 
number of terminals equipped with chargers (Ncs), the total number of chargers (Nch), and the total 
city bus transport system delay time (Dtot): 

min𝑁𝑐𝑠 (4.3) 

min𝑁𝑐ℎ (4.4) 

min𝐷𝑡𝑜𝑡 (4.5) 

The objectives Ncs and Nch are simply determined from the charging configuration candidate 
generated in each iteration of genetic algorithm, while Dtot is calculated by the macro-simulation 
model (Subsection 4.3). 

4.5.2 Optimization problem constraints 

As discussed in Subsection 4.2, the optimization constraints are formulated as: 

𝐶ℎ𝑖 = [0,𝑁𝑏]/{1},  i = 1,...,n (4.6) 

𝑅𝐶𝑟 ≥ 1,  r = 1,...,Nr (4.7) 

The constraint (4.6) specifies that the number of chargers at every terminal needs to be in the range 
from 0 to 𝑁𝑏, except 1. Namely, it is deemed to be cost-ineffective to build the whole terminal 
charging infrastructure for only one charger. The constraint (4.7) represents a route coverage 
constraint meaning that every route needs to include at least one charging terminal. Note that since 
every charging terminal has at least 2 chargers, the minimum number of chargers available on any 
route is 2. 

4.5.3 Optimization scenarios 

Table 9 overviews the scenarios for which the optimization and related analyses will be carried out in 
the following subsections. There are four scenarios, each with its own properties related to pilOPT 
algorithm modes, number of iterations in the case self-initialized mode, and the input space size. The 
pilOPT algorithm has two operational modes: autonomous and self-initialized mode, where the former 
stops when the Pareto frontier cannot improve any further, while the latter halts when a predefined 
number of algorithm iterations is exceeded. 

The first scenario is the basic one, where all terminals can be charging terminal candidates, and the 
optimization algorithm is running in autonomous mode. The second scenario has a reduced input 
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space, where the number of charging terminal candidates is reduced from 25 to 10, as discussed in 
Subsection 4.4. The charging candidates can have the number of chargers in the range [2, 𝑁𝑏], while 
the number of chargers for no-charging candidates is set to 0. The third scenario involves the self-
initialized mode and the reduced input space, where the pilOPT algorithm is initialized to the number 
of iterations that was automatically generated in the first scenario. Finally, the fourth scenario is the 
same as the third one, but the number of iterations is set to the maximum value of 20,000. 

Table 9 Overview of charging configuration optimization scenarios 

 

4.5.4 Comparative analysis 

Table 10 shows which charging configuration combinations from Table 8 are found in which 
optimization scenario from Table 9. The labels Feasible and Pareto optimal designate whether the 
solution is feasible (in terms of satisfying the constraints) and Pareto optimal (the best at least in one 
objective), respectively. “Greedy combination 4” results in feasible and Pareto optimal solutions for 
all optimization scenarios, while other configuration combinations yield only feasible solutions and 
only in some optimization scenarios. 

The reason for the success of Greedy combination 4 has been found to lie in the effect that charging 
terminals selected in that configuration have bigger terminal dwell time (the time between arrival and 
departure) than other charging configuration combinations. According to Table 8, Greedy combination 
1 relies on charging terminals s13 and s15, while Greedy combination 4 uses terminals s04 and s12 for 
charging. Also, Greedy combination 3 involves the terminal s13, as opposed to s04 in the case of Greedy 
combination 4. The dwell time graph shown in Fig. 32 indicates that the terminals s04 and s12 indeed 
have significantly higher dwell time than the terminals s13 and s15 (approx. 18 min vs. 10 min in 
average), which makes them more suitable charging candidates (higher charging availability). Similarly, 



OLGA_D2.1_SoftwareSolution_ebusTransportElectrification_TransportSystemOptimization_v1.docx 

 

 

 

Confidential: This document is property of the OLGA Consortium and shall not be distributed or reproduced  
without the formal approval of the Consortium 

     61/118 
 

Greedy combination 2 involves the charging terminal s15, which has lower dwell time as opposed to 
s12 of Greedy combination 4. 

Table 10 Overview of the charging configuration combinations found in each scenario, both according to 
all feasible and Pareto solutions 

 
 

 

Fig. 32 Terminal dwell time statistics 
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4.6 Results and discussion 

In this subsection, the results for optimization scenarios defined in Table 9 are presented and 
discussed. First, optimization results are given, and they are then supplemented by detailed macro-
simulation results. 

4.6.1 Optimization results 

The first scenario from Table 9 is the “Autonomous complete space” scenario, which concerns the 
complete (unreduced) input space and autonomous mode of pilOPT algorithm. The optimization 
resulted in 11,723 iterations and it managed to find charging configurations with minimum 8 charging 
terminals and the total number of chargers in the range from [23, 45], as shown by the 3D Pareto 
frontier in Fig. 33a. This solution agrees with the results presented in Subsection 4.4 and Table 8, i.e. 
the full optimization finds the same minimum number of charging terminals as greedy algorithm did. 
The Pareto frontier in Fig. 33a suggests that the total transport system delay time, as the third 
objective, can be reduced (blue tones) if the number of charging terminals and/or the number of 
chargers is increased. 

When reducing the input space (Fig. 33b, Scenario 2), the optimizer again finds configurations with 
minimum 8 charging terminals, but the number of chargers increase to lie in the range [30, 35], which 
is suboptimal in comparison to the previous optimization scenario. Since the corresponding number 
of iterations is also significantly lower (4,475 vs. 11,723), this result can be explained by the solver 
getting stuck in local optima. 

When using the self-initialized mode with the pre-specified number of iterations (equal to that of the 
first scenario, i.e. 11,723; Scenario 3), the Pareto frontier shown in Fig. 33c is obtained. Again, the 
configurations with minimum 8 charging terminals are found, but the total number of chargers is 
reduced to the range [18, 27]. This is a significant improvement in the comparison with the first and 
second optimization scenarios, which is due to the reduced input space. 

When using the maximum number of iterations, which is 20,000, the optimization results in the Pareto 
frontier shown in Fig. 33d (Scenario 4). Here, the optimal configurations with the minimum number 
of charging terminals equal to 8 are extended to the number of chargers in the range [16, 26], i.e. the 
number of chargers can be reduced to 16 and 17 when compared to the third optimization scenario. 
However, the maximum time delay for those two configurations is very large (more than 5 hours vs. 
half an hour for the case of 18 chargers). Thus, those configurations are rejected as impractical, and 
it may be concluded that the previous scenario (Scenario 3) could not be further improved. Its 
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characteristic charging configurations marked by black circles in Fig. 33c will be analysed in detail in 
Subsection 4.6.3. 

 

Fig. 33 Pareto frontiers obtained for different optimization scenarios from Table 10: a) Autonomous 
complete space, b) Autonomous reduced space, c) Self-initialized reduced space, and d) Self-initialized 

reduced space II 

4.6.2 Optimization procedure 

Based on the results from the previous subsection, this subsection formalises the optimization steps, 
as shown in Fig. 34 and elaborated as follows: (i) Autonomous complete space scenario is run first in 
order to give the number of iterations for step (iii), (ii) Set of charging terminal candidates is generated 
by using the modified greedy set-cover algorithm, as explained Subsection 4.4, (iii) Self-initialized 
reduced space scenario is run with the number of iterations taken from step (i) and charging terminal 
candidates from step (ii), (iv) Pareto frontier obtained in step (iii) is used to obtain configurations with 
the minimum number of chargers and charging terminals. 
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4.6.3 Simulation outcomes for Pareto optimal solutions 

The optimal configurations obtained in Subsection 4.6.1 (see Fig. 33c) based on the procedure 
summarized in Subsection 4.6.2 (i.e., Fig. 34) are analysed in this subsection based on the macro-
simulation results. The results are compared with those corresponding to the charging configurations 
found manually, i.e. through expert knowledge (see Table 8). The purpose of the detailed analysis is 
to assess charging configurations and get a detailed overview of macro-simulation results (i.e. final-
SoC distribution, energy-charged, number of utilized buses, dwell time etc.). 

The macro-simulation results presented in Fig. 35 contain 6 plots. The first plot shows the e-bus SoC 
values at the end of the day (i.e., the final SoC, SoCf) for every route. The second graph is a bar chart 
of the final SoC categories related to unacceptable (𝑆𝑜𝐶𝑓 < 0), risky (0 ≤ 𝑆𝑜𝐶𝑓 < 20%) and safe 

(𝑆𝑜𝐶𝑓 ≥ 20%) final SoC. The third plot shows the total energy charged to all buses at each route. The 

fourth plot is a boxplot representing the available charging time statistics. The fifth graph shows the 
number of utilized/unutilized buses on every route. The last (sixth) plot gives the boxplot statistics of 
the individual bus delay time for every route. 

 
Fig. 34 Optimal charging configuration optimization setup 
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As discussed in Subsection 4.6.1, the Pareto frontier gathered from the “Self-initialized reduced 
space” scenario (Scenario 3), shown in Fig. 33c, resulted in configurations that had [18, 25] chargers 
distributed on 8 charging terminals, which corresponded to the minimum number of charging 
terminals when satisfying the route coverage constraint. For the sake of simplicity, only 
configurations with upper and lower bands of the number of chargers (designated by circles in Fig. 
33c) have been simulated and are discussed below. Fig. 35 presents the macro-simulation results for 
the lower-band configuration with 18 charging terminals. 

The optimal configuration with 18 chargers is sustaining, i.e. all buses have 𝑆𝑜𝐶𝑓 > 0. The 

total/cumulative delay time per bus is reasonable, with minimum values of 1 min, and a peak lower 
than 30 minutes. Note that some routes (i.e. r05 and r12) have no delayed missions. Thus, this 
configuration may be deemed as overly satisfactory. However, some routes are characterized by low 
final SoC; e.g., route r03 has a bus with a final SoC value of around 5%, which can be regarded as risky 
and can be improved by adding more chargers to a terminal of that route. 

 

Fig. 35 Macro-simulation results for optimal charging configuration related to 8 charging terminals and 
18 chargers (see left-hand side circle in Fig. 33c) 
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Fig. 36 shows macro-simulation results related to optimal charging configuration with 25 chargers 
(see upper-band circle in Fig. 33c). Since the number of chargers is increased by 7 compared to the 
previous configuration, the final SoC values are higher, and accordingly the total delay time is 
somewhat reduced (Fig. 36). 

The configurations found through expert knowledge (i.e., “manually”) are listed in Table 11 based on 
Table 8 and variation of total number of chargers. Table 11 also shows the above-considered, optimal 
configurations. All the configurations have 8 charging terminals and a number of chargers in the range 
[18, 46], where the charging configuration with the minimum number of chargers is the one obtained 
by using the pilOPT optimization and analysed with Fig. 35. 

 

Fig. 36 Macro-simulation results for optimal charging configuration related to 8 charging terminals and 
25 chargers (see right-hand side circle in Fig. 33c) 
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Table 11 Manually-found and optimization-obtained charging configurations 

 

Table 12 shows comparative performance metrics based on the macro-simulation output data. The 
pilOPT charging configuration with 18 chargers is optimal in terms of investment cost, but it has a 
considerably lower final SoC value than other configurations having more chargers. Accordingly, 
there is also a significant increase in the number of arrivals with 𝑆𝑜𝐶𝑓 < 20% than in other 

configurations. To this extent, the configuration pilOPT 25 should be preferred over pilOPT 18, and 
it is distinctively better than the manually found configuration with comparable (or even somewhat 
higher) number of chargers in terms of final SoC and delay statistics. 

Table 12 Overview of macro-simulation-based performance metrics for manually selected and optimal 
charging configurations 
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4.7 Short conclusion 

A search space reduction-supported multi-objective approach of optimizing the city bus charging 
configuration system has been proposed and implemented by using the pilOPT algorithm of 
modeFRONTIER environment. The approach is summarized in Fig. 34, and includes (i) obtaining the 
number of iterations from the “Autonomous complete space” scenario, (ii) utilizing the modified 
greedy set-cover algorithm to reduce the input space, i.e. obtain the optimal charging terminals 
candidates, (iii) creating the self-initialized optimization model with the number of iterations set as 
obtained in step (i) and with a reduced number of charging terminals according to step (ii), and (iv) 
analysing Pareto frontier solutions and choosing the one with a minimum number of chargers and 
charging terminals while satisfying other practical/operational metrics such as those related to battery 
state of charge (SoC) final value and cumulative bus departure delay caused by charging restrictions. 

The selected Pareto optimal charging configurations have been compared with the ones found based 
on expert knowledge. It has been demonstrated that the proposed optimization approach results in a 
lower number of chargers keeping the total delay time low and ensuring bus transport system 
maintainability in the view of battery state of charge. 

5 Optimal charging management 

5.1 Introduction 

The proposed hierarchical EV fleet charging management is conceived to optimize the charging power 
time profiles at two levels: (i) aggregate level, and (ii) distributed level of individual EVs (see illustration 
in Fig. 37). The charging power profile on the aggregate level is meant to be optimized in a receding 
horizon manner (a model predictive control approach, MPC) by using a simplified and numerically 
efficient aggregate battery-based EV fleet model. The obtained optimal aggregate charging power is 
then distributed over individual EVs in each time step by using a heuristic algorithm based on charging 
priorities. The main advantage of this hierarchical approach is in simplicity of implementation and 
excellent scalability to relatively large EV fleets (e.g., e-hubs; i.e., its computational complexity is 
invariant to the number of EVs within a fleet). 

The optimization on the aggregate level assumes the availability of predictions of different quantities 
over a prediction horizon, such as arrival time of EVs (i.e., starting time of their charging) and related 
battery state-of-charge (SoC), electricity price, power production from renewable energy sources 
(RES), electricity consumption of other consumers within a local micro-grid, and similar. For instance, 
in the case of e-bus fleets, the arrival time can be predicted from known driving schedules and 
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historical and actual traffic data. Similarly, historical data and external condition prediction (e.g., 
weather forecast) can be used in connection with machine learning techniques to provide internal 
and RES electricity productions, as well as electricity prices. 

 

Fig. 37 Concept of hierarchical EV fleet charging management framework 

5.2 EV fleet models 

Two types of EV fleet models are formulated and used [12]: (i) aggregate, and (ii) distributed; where 
the first one considers all EVs within fleet as a single aggregated battery, while the second one models 
each EV battery separately. The batteries are modelled as energy storages with the state-of-energy 
(SoE) and the charging power as their state and control variables, respectively. 

5.2.1 Aggregate EV fleet model 

Dynamics of the aggregate EV fleet model is described by the following state equation [12]: 

𝑆𝑜𝐸𝑎𝑔𝑔(𝑘 + 1) = 𝑆𝑜𝐸𝑎𝑔𝑔(𝑘) + 𝑆𝑜𝐸𝑖𝑛,𝑎𝑣𝑔(𝑘)
𝑛𝑖𝑛(𝑘)

𝑁𝑣
−  

                                             𝑆𝑜𝐸𝑜𝑢𝑡,𝑎𝑣𝑔(𝑘)
𝑛𝑜𝑢𝑡(𝑘)

𝑁𝑣
+ 𝜂𝑐ℎ

𝑃𝑐,𝑎𝑔𝑔(𝑘)∆𝑇

𝑁𝑣𝐸𝑚𝑎𝑥,𝑖𝑛𝑑
,     𝑘 = 0,1, … ,𝑁𝑡 − 1, 

(5.1) 

where 𝑘 is the discrete time step, 𝑁𝑡 is the total number of time steps, 𝑆𝑜𝐸𝑖𝑛,𝑎𝑣𝑔 and 𝑆𝑜𝐸𝑜𝑢𝑡,𝑎𝑣𝑔 are 

average SoE values of EVs connecting to the grid and disconnecting from the grid within kth step, 
respectively, with the corresponding number of EVs denoted by 𝑛𝑖𝑛 and 𝑛𝑜𝑢𝑡, respectively, 𝑁𝑣 is the 
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total number of EVs within the fleet, 𝑃𝑐,𝑎𝑔𝑔 is the aggregate charging power, 𝐸𝑚𝑎𝑥,𝑖𝑛𝑑 is the energy 

capacity of the individual battery (expressed in Wh; 𝑁𝑣𝐸𝑚𝑎𝑥,𝑖𝑛𝑑 is the energy capacity of all batteries 

within the fleet), and ∆𝑇 is the time discretization (expressed in hours, [h]). The aggregate SoE state 
variable 𝑆𝑜𝐸𝑎𝑔𝑔 is defined as the normalized average energy of connected EVs: 

𝑆𝑜𝐸𝑎𝑔𝑔(𝑘) =
∑ 𝐸𝑐,𝑖(𝑘)
𝑁𝑣
𝑖=1

𝑁𝑣𝐸𝑚𝑎𝑥,𝑖𝑛𝑑
, (5.2) 

where 𝐸𝑐,𝑖 is the battery energy (in Wh) of ith EV, which equals the actual battery energy if EV is 

connected within the kth time step, while it is zero, otherwise. The lower limit on 𝑆𝑜𝐸𝑎𝑔𝑔 is zero, while 

the upper limit is set to be dependent on the number of EVs connected to the grid (𝑛𝑐): 

0 ≤ 𝑆𝑜𝐸𝑎𝑔𝑔(𝑘) ≤
𝑛𝑐(𝑘)

𝑁𝑣
≤ 1. (5.3) 

The aggregate charging power is limited in the range from zero (only the one-direction power flow is 
enabled, i.e., from a grid to EVs) to the charging power capacity of connected EVs: 

0 ≤ 𝑃𝑐,𝑎𝑔𝑔(𝑘) ≤ 𝑛𝑐(𝑘)𝑃𝑐𝑚𝑎𝑥,𝑖𝑛𝑑, (5.4a) 

where 𝑃𝑐𝑚𝑎𝑥,𝑖𝑛𝑑 is the maximum charging power of individual EV. Additionally, the aggregate charging 

power is limited by the fixed upper constraint: 

𝑃𝑐,𝑎𝑔𝑔(𝑘) ≤ 𝑃𝑐,𝑎𝑔𝑔,max, (5.4b) 

to account for the grid power limit. 

5.2.2 Distributed EV fleet model for offline charging power optimization 

The model structure given by the state equation (5.1) may also be used to model the individual (ith) 
EV battery within a distributed EV fleet model as: 

𝑆𝑜𝐸𝑖(𝑘 + 1) = 𝑆𝑜𝐸𝑖(𝑘) + 𝑆𝑜𝐸𝑖𝑛,𝑖(𝑘)𝑛𝑖𝑛,𝑖(𝑘) − 𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑘)𝑛𝑜𝑢𝑡,𝑖(𝑘) + 𝜂𝑐ℎ
𝑃𝑐,𝑖(𝑘)∆𝑇

𝐸𝑚𝑎𝑥,𝑖𝑛𝑑
, (5.5) 

with related constraints: 

0 ≤ 𝑆𝑜𝐸𝑖(𝑘) ≤ 𝑛𝑐𝑏,𝑖(𝑘),    𝑛𝑐𝑏,𝑖 ∈ {0, 1}, (5.6) 

0 ≤ 𝑃𝑐,𝑖(𝑘) ≤ 𝑛𝑐𝑠,𝑖(𝑘)𝑃𝑐𝑚𝑎𝑥,𝑖𝑛𝑑,    𝑛𝑐𝑠,𝑖 ∈ [0, 1], (5.7) 
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where 𝑁𝑣 from Eq. (5.1) is now set to 1 and thus omitted in Eq. (5.5), 𝑆𝑜𝐸𝑖𝑛,𝑖 and 𝑆𝑜𝐸𝑜𝑢𝑡,𝑖 are SoE values 

of the ith EV when it connects to and disconnects from the grid, respectively, and 𝑛𝑖𝑛,𝑖 and 𝑛𝑜𝑢𝑡,𝑖 are 

binary variables taking the value of 1 if connection/disconnection of ith EV takes place within the kth 
step, and 0, otherwise. The state variable 𝑆𝑜𝐸𝑖 is defined similarly to the definition of 𝑆𝑜𝐸𝑎𝑔𝑔 in (5.2): 

𝑆𝑜𝐸𝑖(𝑘) = 𝐸𝑐,𝑖(𝑘) 𝐸𝑚𝑎𝑥,𝑖𝑛𝑑⁄ , where 𝐸𝑐,𝑖 equals zero if ith EV is disconnected. The variable 𝑛𝑐 from Eqs. 

(5.3) and (5.4) is replaced by 𝑛𝑐𝑏,𝑖(𝑘) in Eq. (5.6) and by 𝑛𝑐𝑠,𝑖 in Eq. (5.7), where 𝑛𝑐𝑏,𝑖 represents the 

binary variable taking the value of 1 if the ith EV is partially or fully connected within kth step, and 0, 
otherwise, while 𝑛𝑐𝑠,𝑖(𝑘) represents a share of EV connection time within the kth step (e.g., 𝑛𝑐𝑠,𝑖 = 0.1 

means that a related EV was connected 10% of time step duration ∆𝑇). 

5.2.3 Distributed EV fleet model for simulation study 

To strictly satisfy the lower SoE constraint in Eq. (5.6), 0 ≤ 𝑆𝑜𝐸𝑖(𝑘), within the EV fleet simulation 
model, the state equation of distributed model (5.5) is modified as: 

𝑆𝑜𝐸𝑖(𝑘 + 1) = {
𝑆𝑜𝐸𝑖𝑛𝑡,𝑖(𝑘), for 𝑛𝑜𝑢𝑡,𝑖(𝑘) = 0,

0, for 𝑛𝑜𝑢𝑡,𝑖(𝑘) = 1,
 (5.8a) 

where 𝑆𝑜𝐸𝑖 at k+1 step takes an intermediate value 𝑆𝑜𝐸𝑖𝑛𝑡,𝑖 if the EV is not disconnected at the kth 

step, while it equals 0, otherwise. The intermediate SoE value incorporates the SoE contributions 
brought by EV connection to the grid (𝑆𝑜𝐸𝑖𝑛,𝑖) and charging with the power 𝑃𝑐,𝑖 (cf. Eq. (5.5)): 

𝑆𝑜𝐸𝑖𝑛𝑡,𝑖(𝑘) = 𝑆𝑜𝐸𝑖(𝑘) + 𝑆𝑜𝐸𝑖𝑛,𝑖(𝑘)𝑛𝑖𝑛,𝑖(𝑘) + 𝜂𝑐ℎ
𝑃𝑐,𝑖(𝑘)∆𝑇

𝐸𝑚𝑎𝑥,𝑖𝑛𝑑
. (5.8b) 

The SoE on departure, 𝑆𝑜𝐸𝑜𝑢𝑡,𝑖, is updated in the (k+1)th step to 𝑆𝑜𝐸𝑖𝑛𝑡,𝑖(𝑘) only if a new driving mission 

starts at the kth step (𝑛𝑜𝑢𝑡,𝑖(𝑘) = 1): 

𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑘 + 1) = {
𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑘), for 𝑛𝑜𝑢𝑡,𝑖(𝑘) = 0,

𝑆𝑜𝐸𝑖𝑛𝑡,𝑖(𝑘), for 𝑛𝑜𝑢𝑡,𝑖(𝑘) = 1.
 (5.9) 

On the other hand, the SoE of an EV arriving from a driving mission and connecting to the grid in the 
kth step, 𝑆𝑜𝐸𝑖𝑛,𝑖, i.e. when 𝑛𝑖𝑛,𝑖(𝑘) = 1 holds, is calculated as a function of the SoE at previous 

departure SoE (i.e., 𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑘)) and a travelled distance 𝑑𝑖(𝑘) of that driving mission: 

𝑆𝑜𝐸𝑖𝑛,𝑖(𝑘) = {
0, for 𝑛𝑖𝑛,𝑖(𝑘) = 0,

𝑓𝑆𝑜𝐸 (𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑘), 𝑑𝑖(𝑘)) , for 𝑛𝑖𝑛,𝑖(𝑘) = 1.
 (5.10) 

The upper constraints on individual charging powers are set to: 
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𝑃𝑐,max,𝑖(𝑘) = min (𝑛𝑐𝑠,𝑖(𝑘)𝑃𝑐max,𝑖𝑛𝑑,
1 − 𝑆𝑜𝐸𝑖(𝑘) − 𝑆𝑜𝐸𝑖𝑛,𝑖(𝑘)𝑛𝑖𝑛,𝑖(𝑘)

𝜂𝑐ℎ∆𝑇
𝐸max,𝑖𝑛𝑑), (5.11) 

where the first term within the operator min(.) corresponds to the upper constraint of Eq. (5.7), while 
the second one is to satisfy the upper SoE limit from Eq. (5.6) based on Eq. (5.8b) with 𝑆𝑜𝐸𝑖𝑛𝑡,𝑖 limited 

to 1 (recall that the lower SoE limit from (5.6) is ensured through the modified state equation (5.8)). 

For the purpose of post-analysis, the SoE and charging power values of individual EVs from the 
distributed model can be aggregated for each time step k as: 

𝑆𝑜𝐸𝑎𝑔𝑔(𝑘) =∑𝑆𝑜𝐸𝑖(𝑘)

𝑁𝑣

𝑖=1

𝑁𝑣⁄ , (5.12) 

𝑃𝑐,𝑎𝑔𝑔(𝑘) =∑𝑃𝑐,𝑖(𝑘)

𝑁𝑣

𝑖=1

. (5.13) 

The charging power can be supplied from the grid (𝑃𝑔) or from the local renewable energy sources 

(RES; 𝑃𝑟𝑒𝑠), with the priority of charging being given to RES while covering the eventual power deficit 
from the grid: 

𝑃𝑔(𝑘) = {
𝑃𝑐,𝑎𝑔𝑔(𝑘) − 𝑃𝑟𝑒𝑠(𝑘), for 𝑃𝑐,𝑎𝑔𝑔(𝑘) − 𝑃𝑟𝑒𝑠(𝑘) > 0,

0, otherwise.
 (5.14) 

5.3 Offline charging management optimization 

The main aim of EV fleet charging optimization is to minimize the cost of energy drawn from the grid: 

𝐶𝑏𝑎𝑡𝑡 = ∑ 𝐶𝑒𝑙(𝑘)
𝑃𝑔(𝑘)∆𝑇

1000

𝑁𝑡−1

𝑘=0

, (5.15) 

where 𝐶𝑒𝑙(𝑘) is the electricity unit price time profile (given in EUR/kWh), while the term 
𝑃𝑔(𝑘)∆𝑇/1000 denotes the grid-supplied charging energy increment in the kth step (expressed in 

kWh). The charging optimization relies on the aggregate EV fleet model, and as such it is subject to 
the SoE dynamics equation (5.1), and SoE and charging power inequality constraints (5.3) and (5.4). 
Additionally, it is required that the final SoE, 𝑆𝑜𝐸𝑎𝑔𝑔(𝑁𝑡), is equal to a pre-determined target value 

𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙 , which is set to be equal to the initial SoE value, 𝑆𝑜𝐸𝑖𝑛𝑖𝑡 = 𝑆𝑜𝐸𝑎𝑔𝑔(0): 

𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙 = 𝑆𝑜𝐸𝑖𝑛𝑖𝑡,  

to satisfy the charge sustaining condition. 
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The optimization problem is solved by using the dynamic programming (DP) algorithm proposed in 
[13], which provides a globally optimal solution for a general, non-convex optimization problem with 
non-convex cost function and constraints. The aforementioned SoE constraints are accounted for 
within the DP formulation via soft constraints 𝐿(𝑘) added to the cost function (5.15) as: 

𝐽 = ∑ 𝐶𝑒𝑙(𝑘)
𝑃𝑔(𝑘)∆𝑇

1000
+ 𝐿(𝑘)

⏟              
𝐹(𝑘)

𝑁𝑡−1

𝑘=0

, (5.16a) 

𝐿(𝑘) = 𝐾𝑔,1(𝑆𝑜𝐸𝑎𝑔𝑔(𝑘 + 1) − 1)𝐻(𝑆𝑜𝐸𝑎𝑔𝑔(𝑘 + 1) − 1)

+ 𝐾𝑔,2 (−𝑆𝑜𝐸𝑎𝑔𝑔(𝑘 + 1))𝐻 (−𝑆𝑜𝐸𝑎𝑔𝑔(𝑘 + 1))

+ 𝐾𝑔,3 (𝑆𝑜𝐸𝑎𝑔𝑔(𝑘 + 1) −
𝑛𝑐(𝑘 + 1)

𝑁𝑣
)𝐻 (𝑆𝑜𝐸𝑎𝑔𝑔(𝑘 + 1) −

𝑛𝑐(𝑘 + 1)

𝑁𝑣
)

+ 𝐾𝑔,4𝐻 (𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙 − 𝑆𝑜𝐸𝑎𝑔𝑔(𝑘 + 1))𝐻(𝑘 − 𝑁𝑡 + 1), 

(5.16b) 

where the function H(.) represents the Heaviside function defined as: 𝐻(𝑧) = 0 for 𝑧 < 0 and 𝐻(𝑧) =
1 for 𝑧 ≥ 0. Relative importance of the individual terms/constraints are given via related weighting 
factors Kg,i, i = 1,…,4, which are all set to high values to enforce constraint satisfaction if possible. The 
physical SoE constraints 0 ≤ 𝑆𝑜𝐸𝑎𝑔𝑔 ≤ 1 are posed to have the highest priority by setting 𝐾𝑔,1 =

𝐾𝑔,2 = 10
9, while the remaining weighting factors are set as 𝐾𝑔,3 = 107 and 𝐾𝑔,4 = 108. The aggregate 

charging power constraints given by Eq. (5.4) are implemented as hard constraints within the DP 
algorithm. Namely, the aggregate charging power 𝑃𝑐,𝑎𝑔𝑔 is iterated over its predefined discrete values, 

from zero until reaching 𝑛𝑐(𝑘)𝑃𝑐𝑚𝑎𝑥,𝑖𝑛𝑑 or 𝑃𝑐,𝑎𝑔𝑔,max, which results in strict satisfaction of these 

constraints. 

The DP procedure [13] consists of two distinctive phases: (i) backward-in-time optimization of 
charging power to minimize the cost (5.16), and (ii) forward-in-time reconstruction of the optimal SoE 
and charging power time profiles SoEagg(k) and Pc,agg(k), starting from the pre-determined initial SoE 
condition SoEagg(0) = 𝑆𝑜𝐸𝑖𝑛𝑖𝑡. Since the DP algorithm requires discrete state and control variables, the 
originally continuous variables, 𝑆𝑜𝐸𝑎𝑔𝑔 and 𝑃𝑐,𝑎𝑔𝑔, are uniformly quantized into certain number of 

discrete values. The phase (i) starts from the last time step 𝑁𝑡 − 1 and iterates backward-in-time until 
reaching the initial time step 0 (i.e.,  𝑘 = {𝑁𝑡 − 1,… , 1, 0}), while minimizing the cumulative cost 
function: 

𝐽𝑘(𝑆𝑜𝐸𝑎𝑔𝑔,𝑘) = min
𝑃𝑐,𝑎𝑔𝑔,𝑘

{𝐹(𝑆𝑜𝐸𝑎𝑔𝑔,𝑘, 𝑃𝑐,𝑎𝑔𝑔,𝑘, 𝑘)+𝐽𝑘+1(𝑆𝑜𝐸𝑎𝑔𝑔,𝑘+1)} (5.17) 
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by iterating over discrete aggregate charging power values 𝑃𝑐,𝑎𝑔𝑔,𝑘. The optimal cumulative cost 

function 𝐽𝑘 and the related charging power 𝑃𝑐,𝑎𝑔𝑔,𝑘 in the kth time step are found and stored for each 

discrete value of 𝑆𝑜𝐸𝑎𝑔𝑔,𝑘. The optimal cumulative cost at the (k+1)th time step, 𝐽𝑘+1(𝑆𝑜𝐸𝑎𝑔𝑔,𝑘+1), is 

obtained by means of linear interpolation if 𝑆𝑜𝐸𝑎𝑔𝑔,𝑘+1 falls between two discrete grid values of SoE. 

The SoE in (k+1)th step is obtained by the state equation (5.1) in dependence on the current SoE, 
𝑆𝑜𝐸𝑎𝑔𝑔,𝑘, and the charging power 𝑃𝑐,𝑎𝑔𝑔,𝑘. The forward-in-time reconstruction is then performed 

starting from a pre-defined initial SoE value (SoEagg(0) = 𝑆𝑜𝐶𝑖𝑛𝑖𝑡), for which the optimal charging power 
obtained in the backward phase is restored and applied to the state equation (5.1) to get 𝑆𝑜𝐸𝑎𝑔𝑔,1, 

where the linear interpolation is again applied. The forward procedure is iteratively repeated until the 
last time step 𝑁𝑡 − 1. 

Apart from the aggregate EV fleet model, the formulated optimization problem given by the cost 
function (5.16) and solved by the DP algorithm can also be used for charging optimization of individual 
EVs represented by the model (5.5). Namely, 𝑆𝑜𝐶𝑎𝑔𝑔 from (5.16) is replaced with 𝑆𝑜𝐸𝑖 for ith EV 

charging optimization, 𝑁𝑣 is set to 1, and 𝑛𝑐𝑏,𝑖 from (5.6) is used instead of 𝑛𝑐 . While minimizing the 

cost (5.17) in the DP backward-in-time phase, the individual EV charging power is iterated from 0 
until reaching 𝑛𝑐𝑠,𝑖(𝑘)𝑃𝑐𝑚𝑎𝑥,𝑖𝑛𝑑 (see (5.7)). The charging optimization is performed separately for each 

individual EV, as the joint DP optimization of all EVs would not be feasible due to the increased 
number of state and control variables for the distributed model and consequently prohibitive increase 
in computational complexity of the DP algorithm. To provide such a decoupled optimization approach, 
the grid power-related upper constraint (5.4b) on the aggregate charging power is omitted. Although 
this makes the formulation unrealistic (if the constraint turns out to be violated), the approach can be 
used for the purpose of benchmarking the aggregated model-based optimization against the more 
direct distributed model-based one (both implemented without the aggregate charging power 
constraints). 

5.4 Online charging management 

5.4.1 Model predictive control 

Model predictive control (MPC) is an advanced control technique which combines an optimization-
based open-loop control with a closed-loop feedback control. It effectively handles multi-input/multi-
output (MIMO) systems, where constraints on state and control variables can explicitly be imposed. 
MPC is typically executed in a receding horizon manner, while taking into account the current 
measured (or estimated) process state variables (feedback part), and solving its optimization problem 
(optimal control) in each sampling time step on the prediction horizon. As its name suggests, while 



OLGA_D2.1_SoftwareSolution_ebusTransportElectrification_TransportSystemOptimization_v1.docx 

 

 

 

Confidential: This document is property of the OLGA Consortium and shall not be distributed or reproduced  
without the formal approval of the Consortium 

     75/118 
 

solving the optimization problem, MPC relies on a model to predict the system (process) behaviour 
on the prediction horizon. For full performance, external variables should be predicted, as well, based 
on an external/environment model. 

The online EV fleet charging management, executed on the aggregated level, as shown in Fig. 37, is 
based here on the receding horizon MPC framework (denoted as MPC-REC). The control variable 
optimization problem is solved within MPC by using the DP algorithm used in offline optimization 
(Subsection 5.3), with the main difference that it is now run online on the receding horizon of length 
Np. The sampling time is set to 15 min (∆T = 0.25 h), while the prediction horizon is one day (𝑁𝑝= 96 

sampling steps). The MPC optimization problem including cost function and constraints is formulated 
as (cf. Eq. (5.16)): 

𝐽 = ∑ 𝐶𝑒𝑙(𝑗|𝑘)
𝑃𝑔(𝑗|𝑘)∆𝑇

1000
+ 𝐿(𝑗|𝑘)

⏟                  
𝐹(𝑗|𝑘)

𝑁𝑝−1

𝑗=0

, (5.18a) 

𝐿(𝑗|𝑘) = 𝐾𝑔,1(𝑆𝑜𝐸𝑎𝑔𝑔(𝑗 + 1|𝑘) − 1)𝐻(𝑆𝑜𝐸𝑎𝑔𝑔(𝑗 + 1|𝑘) − 1)

+ 𝐾𝑔,2 (−𝑆𝑜𝐸𝑎𝑔𝑔(𝑗 + 1|𝑘))𝐻 (−𝑆𝑜𝐸𝑎𝑔𝑔(𝑗 + 1|𝑘))

+ 𝐾𝑔,3 (𝑆𝑜𝐸𝑎𝑔𝑔(𝑗 + 1|𝑘) −
𝑛𝑐(𝑗 + 1|𝑘)

𝑁𝑣
)𝐻 (𝑆𝑜𝐸𝑎𝑔𝑔(𝑗 + 1|𝑘) −

𝑛𝑐(𝑗 + 1|𝑘)

𝑁𝑣
)

+ 𝐾𝑔,4𝐻 (𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙 − 𝑆𝑜𝐸𝑎𝑔𝑔(𝑗 + 1|𝑘))𝐻(𝑗 − 𝑁𝑝 + 1), 

(5.18b) 

0 ≤ 𝑃𝑐,𝑎𝑔𝑔(𝑗|𝑘) ≤ 𝑛𝑐(𝑗|𝑘)𝑃𝑐𝑚𝑎𝑥,𝑖𝑛𝑑, (5.18c) 

𝑃𝑐,𝑎𝑔𝑔(𝑗|𝑘) ≤ 𝑃𝑐,𝑎𝑔𝑔,max, (5.18d) 

𝑆𝑜𝐸𝑎𝑔𝑔(𝑗 + 1|𝑘) = 𝑆𝑜𝐸𝑎𝑔𝑔(𝑗|𝑘) + 𝑆𝑜𝐸𝑖𝑛,𝑎𝑣𝑔(𝑗|𝑘)
𝑛𝑖𝑛(𝑗|𝑘)

𝑁𝑣
− 

𝑆𝑜𝐸𝑜𝑢𝑡,𝑎𝑣𝑔(𝑗|𝑘)
𝑛𝑜𝑢𝑡(𝑗|𝑘)

𝑁𝑣
+ 𝜂𝑐ℎ

𝑃𝑐,𝑎𝑔𝑔(𝑗|𝑘)∆𝑇

𝑁𝑣𝐸𝑚𝑎𝑥,𝑖𝑛𝑑
, 

(5.18e) 

where k denotes the current simulation time step, and j is the time step on the prediction horizon 
(relative to the current step k; 𝑗 = 0, 1, … ,𝑁𝑝 − 1). The state variable 𝑆𝑜𝐸𝑎𝑔𝑔 is predicted on the 

horizon by using the prediction model (5.18e), which is set to have the same structure as the 
simulation model (5.1). Since the final step is generally outside of the receding horizon, the 
requirement on the final SoE is omitted here by setting 𝐾𝑔,4 = 0. As in the case of offline DP 

(Subsection 5.3), the aggregate charging power constraints (5.18c) and (5.18d) are implemented as 
hard constraints. The DP optimization provides a sequence of optimal aggregate charging power 
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values 𝑃𝑐,𝑎𝑔𝑔(𝑗|𝑘) (𝑗 = 0,1, … , 𝑁𝑝 − 1), and only the first element 𝑃𝑐,𝑎𝑔𝑔(0|𝑘) is applied in the current, 

kth sampling step, while the remaining ones are discarded. 

Another MPC approach considered performs the optimization on a shrinking horizon (denoted as 
MPC-DIM), which gradually diminishes as time progresses towards the end time of a day (set typically 
in the early morning period where the transport system is typically at rest preparing for the next day). 
Thus, the time-varying length of MPC-DIM prediction horizon 𝑁𝑝,𝑑𝑖𝑚(𝑘) is set as  

𝑁𝑝,𝑑𝑖𝑚(𝑘) = 𝑁𝑝 − 𝑘 + ⌊
𝑘

𝑁𝑝
⌋𝑁𝑝, 𝑘 = {0,… , 𝑁𝑡 − 1}, (5.19) 

where 𝑁𝑝 is the fixed horizon length (equal to 𝑁𝑝 = 96), and ⌊𝑥⌋ is a mathematical operator providing 

an integer counterpart of a real number 𝑥. Note that the full prediction horizon of length 𝑁𝑝 rebuilds 

when a new day starts. MPC-DIM relies on the same optimization problem (5.18) as MPC-REC, but 
with the final SoE condition included (i.e., 𝐾𝑔,4 = 108 is set in Eq. (5.18b) instead of being equal to 

zero), as its final step is now contained in the prediction horizon. 

The MPC-DIM approach is deemed as a reasonable alternative option since the fleet driving schedules 
are planned offline one day ahead. Apart from that, the MPC-DIM is characterized by an improved 
computational efficiency since its prediction horizon length is shorter in average when compared to 
MPC-REC, and thus related optimization executes faster. 

5.4.2 Preparation of MPC input distributions 

The following input time profiles of individual EVs denoted by the subscript 𝑖 = 1, 2, … , 𝑁𝑣 should be 
predicted over the prediction horizon 𝑗 = 0,1, … ,𝑁𝑝 − 1: 𝑛𝑖𝑛,𝑖(𝑗|𝑘), 𝑛𝑜𝑢𝑡,𝑖(𝑗|𝑘), 𝑆𝑜𝐸𝑖𝑛,𝑖(𝑗|𝑘), and 

𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑗|𝑘), to serve as a basis for calculating the following input time profiles of the aggregate 

battery model (5.18e) needed for MPC optimization: 𝑛𝑖𝑛(𝑗|𝑘), 𝑛𝑜𝑢𝑡(𝑗|𝑘), 𝑛𝑐(𝑗|𝑘), 𝑆𝑜𝐸𝑖𝑛,𝑎𝑣𝑔(𝑗|𝑘), and 

𝑆𝑜𝐸𝑜𝑢𝑡,𝑎𝑣𝑔(𝑗|𝑘). While the arrival and departing times of each EV, 𝑛𝑖𝑛,𝑖(𝑗|𝑘) and 𝑛𝑜𝑢𝑡,𝑖(𝑗|𝑘), may be 

predicted from the planned driving schedules, the SoE of the arriving EVs, 𝑆𝑜𝐸𝑖𝑛,𝑖(𝑗|𝑘), should be 

predicted by using a transport energy demand model (below denoted by 𝑓𝑆𝑜𝐸(. )). 

To maximize the vehicle range and also simplify the energy demand model, it may be assumed that 
EV batteries are always fully charged when disconnecting from the grid and departing, i.e., 
𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑗|𝑘) = 1 when 𝑛𝑜𝑢𝑡,𝑖(𝑗|𝑘) = 1 [12, 13]. However, it may happen that an EV is parked and 

connected to the grid for a relatively short amount of time between two driving missions and cannot 
be fully charged under present charging power limit of 𝑃𝑐𝑚𝑎𝑥,𝑖𝑛𝑑. To satisfy the departure schedule, it 

disconnects from the charger before the battery is full, and eventually rely on fast charging on road if 
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the energy charged (at depot or e-hub) is not high enough to cover the trip energy demand. Thus, 
𝑆𝑜𝐸𝑜𝑢𝑡,𝑖 profiles should carefully be prepared to have the maximal possible values of 1, if possible, 

while not violating the individual charging power limit. For this purpose, the distributed model (5.8)-
(5.11), whose equations are rewritten below, is evaluated over the prediction horizon (𝑗 = 0,1, … , 𝑁𝑝 −

1; in the recursive sense) for the scheduled profiles 𝑛𝑖𝑛,𝑖(𝑗|𝑘) and 𝑛𝑜𝑢𝑡,𝑖(𝑗|𝑘), the maximum charging 

power 𝑃𝑐𝑚𝑎𝑥,𝑖𝑛𝑑, and the known initial conditions: 𝑆𝑜𝐸𝑖(0|𝑘), 𝑆𝑜𝐸𝑖𝑛,𝑖(0|𝑘), 𝑛𝑖𝑛,𝑖(0|𝑘), and 𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(0|𝑘). 

𝑆𝑜𝐸𝑖(𝑗 + 1|𝑘) = {
𝑆𝑜𝐸𝑖𝑛𝑡,𝑖(𝑗|𝑘), for 𝑛𝑜𝑢𝑡,𝑖(𝑗|𝑘) = 0,

0, for 𝑛𝑜𝑢𝑡,𝑖(𝑗|𝑘) = 1,
 (5.20a) 

𝑆𝑜𝐸𝑖𝑛𝑡,𝑖(𝑗|𝑘) = min(1, 𝑆𝑜𝐸𝑖(𝑗|𝑘) + 𝑆𝑜𝐸𝑖𝑛,𝑖(𝑗|𝑘)𝑛𝑖𝑛,𝑖(𝑗|𝑘) + 𝜂𝑐ℎ
𝑃𝑐𝑚𝑎𝑥,𝑖𝑛𝑑∆𝑇

𝐸𝑚𝑎𝑥,𝑖𝑛𝑑
), (5.20b) 

𝑆𝑜𝐸𝑖𝑛,𝑖(𝑗|𝑘) = {
0, for 𝑛𝑖𝑛,𝑖(𝑗|𝑘) = 0,

𝑓𝑆𝑜𝐸 (𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑗|𝑘), 𝑑𝑖(𝑗|𝑘)) , for 𝑛𝑖𝑛,𝑖(𝑗|𝑘) = 1,
 (5.20c) 

𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑗 + 1|𝑘) = {
𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑗|𝑘), for 𝑛𝑜𝑢𝑡,𝑖(𝑗|𝑘) = 0,

𝑆𝑜𝐸𝑖𝑛𝑡,𝑖(𝑗|𝑘), for 𝑛𝑜𝑢𝑡,𝑖(𝑗|𝑘) = 1.
 (5.20d) 

Note that the expression (5.20b) effectively saturates SoE to the maximum possible value of 1 if it is 
reached prior to vehicle departure (under consistent application of the maximum charging power). 
The obtained SoE value at departures is used as the input for the transport demand model 𝑓𝑆𝑜𝐸(∙) in 
Eq. (5.20c) to predict the SoE at arrival (i.e., return to depot) and connections to the grid (when 
𝑛𝑖𝑛,𝑖(𝑗|𝑘) = 1).  

The number of arriving and departing EVs for the aggregate battery prediction model are calculated 
by summing up the individual profiles: 

𝑛𝑖𝑛(𝑗|𝑘) =∑𝑛𝑖𝑛,𝑖(𝑗|𝑘)

𝑁𝑣

𝑖=1

, (5.21a) 

𝑛𝑜𝑢𝑡(𝑗|𝑘) =∑𝑛𝑜𝑢𝑡,𝑖(𝑗|𝑘)

𝑁𝑣

𝑖=1

. (5.21b) 

Similarly, the aggregate battery SoE time profiles are calculated by averaging the SoE profiles of 
individual EVs: 

𝑆𝑜𝐸𝑖𝑛,𝑎𝑣𝑔(𝑗|𝑘) =
∑ 𝑆𝑜𝐸𝑖𝑛,𝑖(𝑗|𝑘)𝑛𝑖𝑛,𝑖(𝑗|𝑘)
𝑁𝑣
𝑖=1

∑ 𝑛𝑖𝑛,𝑖(𝑗|𝑘)
𝑁𝑣
𝑖=1

, (5.22a) 
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𝑆𝑜𝐸𝑜𝑢𝑡,𝑎𝑣𝑔(𝑗|𝑘) =
∑ 𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑗|𝑘)𝑛𝑜𝑢𝑡,𝑖(𝑗|𝑘)
𝑁𝑣
𝑖=1

∑ 𝑛𝑜𝑢𝑡,𝑖(𝑗|𝑘)
𝑁𝑣
𝑖=1

. (5.22b) 

The number of EVs parked and connected to the grid within each time step, needed for establishing 
the upper power limit (5.4a), is determined from the time profiles of number of arriving and departing 
EVs: 

𝑛𝑐(𝑗 + 1|𝑘) = 𝑛𝑐(𝑗|𝑘) + 𝑛𝑖𝑛(𝑗|𝑘) − 𝑛𝑜𝑢𝑡(𝑗|𝑘), 𝑗 = 0,1, … ,𝑁𝑝 − 1, (5.23) 

where the initial condition 𝑛𝑐(0|𝑘) corresponds to the known, current number of connected EVs. 
Additional time profiles needed for MPC optimization, are related to the electricity price 𝐶𝑒𝑙(𝑗|𝑘) and 
the RES power production 𝑃𝑟𝑒𝑠(𝑗|𝑘), and they should also be predicted, for instance based on 
historical data and meteorological forecasts. 

5.4.3 Distribution of aggregate charging power to individual vehicles 

The aggregate charging power 𝑃𝑐,𝑎𝑔𝑔(𝑘), obtained by MPC in the kth time step, should be distributed 

to the connected individual EVs. For this purpose, a rule-based algorithm is established which 
prioritizes to charge EVs with lower SoE and lower remaining connection times (i.e., sooner 
departure). The related procedure, summarized below and formulated in Algorithm 3, is generally 
iterative since saturation of individual charging power due to the upper limits (5.11) may inhibit one-
shot aggregate power distribution. 

The procedure starts by calculating the lower and upper individual charging power limits, 𝑃𝑐,min,𝑖(𝑘) 

and 𝑃𝑐,max,𝑖(𝑘), where 𝑃𝑐,max,𝑖(𝑘) is given by Eq. (5.11), while 𝑃𝑐,min,𝑖(𝑘) is determined according to the 

requirement that each EV is targeted to have the maximum possible SoE (equal to 1) each time when 
disconnecting from the grid (leading to the maximum vehicle range). More specifically, 𝑃𝑐,min,𝑖(𝑘) is 

derived from Eq. (5.8b) under the assumption that ith EV will be charged with the maximum power 
𝑃𝑐𝑚𝑎𝑥,𝑖𝑛𝑑 from the following (k+1)th time step until the end of connection time 𝑡𝑐,𝑖. 

1 = 𝑆𝑜𝐸𝑖(𝑘) + 𝑆𝑜𝐸𝑖𝑛,𝑖(𝑘)𝑛𝑖𝑛,𝑖(𝑘) + 𝜂𝑐ℎ
𝑛𝑐𝑠,𝑖(𝑘)𝑃𝑐,𝑖(𝑘)∆𝑇 + (𝑡𝑐,𝑖(𝑘) − 𝑛𝑐𝑠,𝑖(𝑘)∆𝑇)𝑃𝑐𝑚𝑎𝑥,𝑖𝑛𝑑

𝐸𝑚𝑎𝑥,𝑖𝑛𝑑
. (5.24) 

Eq. (5.24) is solved for 𝑃𝑐,𝑖(𝑘) to get the minimum charging power 𝑃𝑐,𝑚𝑖𝑛,𝑖(𝑘) in the kth step under 

which the ith EV battery can still be fully charged until departure: 
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𝑃𝑐,min0,𝑖(𝑘) =
1

𝑛𝑐𝑠,𝑖(𝑘)∆𝑇
(
𝐸𝑚𝑎𝑥,𝑖𝑛𝑑
𝜂𝑐ℎ

(1 − 𝑆𝑜𝐸𝑖(𝑘) − 𝑆𝑜𝐸𝑖𝑛,𝑖(𝑘)𝑛𝑖𝑛,𝑖(𝑘))

− (𝑡𝑐,𝑖(𝑘) − 𝑛𝑐𝑠,𝑖(𝑘)∆𝑇)𝑃𝑐𝑚𝑎𝑥,𝑖𝑛𝑑). 

(5.25) 

The upper charging power constraint (5.11) is set to have priority over the lower constraint (5.25), 
i.e., the maximum charging power constraint cannot be violated, while the SoE at departure can be 
lower than 1 if the battery cannot be fully charged due to short connection/parking time. To this end, 
the lower limit 𝑃𝑐,𝑚𝑖𝑛,𝑖(𝑘) of each EV is saturated to 𝑃𝑐,𝑚𝑎𝑥,𝑖(𝑘) as: 

𝑃𝑐,min,𝑖(𝑘) = {
𝑃𝑐,min0,𝑖(𝑘), for 𝑃𝑐,min0,𝑖(𝑘) ≤ 𝑃𝑐,𝑚𝑎𝑥,𝑖(𝑘),

𝑃𝑐,𝑚𝑎𝑥,𝑖(𝑘), for 𝑃𝑐,min0,𝑖(𝑘) > 𝑃𝑐,𝑚𝑎𝑥,𝑖(𝑘).
 (5.26) 

The individual charging power values are then initialized to their lower limit values: 

𝑃𝑐,𝑖(𝑘) = {
𝑃𝑐,𝑚𝑖𝑛,𝑖(𝑘), for 𝑃𝑐,𝑚𝑖𝑛,𝑖(𝑘) > 0,

0, otherwise.
 (5.27) 

They are rescaled by the factor 𝑃𝑐,𝑎𝑔𝑔,𝑚𝑎𝑥 ∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣
𝑖=1⁄  if their sum exceeds the allowed aggregate 

charging power 𝑃𝑐,𝑎𝑔𝑔,𝑚𝑎𝑥 given by Eq. (5.4b) (i.e., if ∑ 𝑃𝑐,𝑖(𝑘) > 𝑃𝑐,𝑎𝑔𝑔,𝑚𝑎𝑥
𝑁𝑣
𝑖=1 ). The remained aggregate 

charging power is then calculated as: 

𝑃𝑐,𝑎𝑔𝑔,𝑟(𝑘) = 𝑃𝑐,𝑎𝑔𝑔(𝑘) −∑𝑃𝑐,𝑖(𝑘)

𝑁𝑣

𝑖=1

, (5.28) 

which is distributed over individual EVs according to shares 𝑝𝑖(𝑘), set to be proportional to the 
deviation of corresponding SoE from 1 (i.e., from being fully charged), and inversely proportional to 
the remaining connection time 𝑡𝑐,𝑖(𝑘): 

𝑝𝑖(𝑘) =
1 − 𝑆𝑜𝐸𝑖(𝑘) − 𝑆𝑜𝐸𝑖𝑛,𝑖(𝑘)𝑛𝑖𝑛,𝑖(𝑘) − 𝜂𝑐ℎ

𝑃𝑐,𝑖(𝑘)∆𝑇
𝐸𝑚𝑎𝑥,𝑖𝑛𝑑

𝑡𝑐,𝑖(𝑘)
. 

(5.29) 

These shares are calculated only for those EVs connected to the grid, 𝑛𝑐𝑏,𝑖(𝑘) = 1, for which the 

currently designated charging power values 𝑃𝑐,𝑖(𝑘) are lower than the related maximum values 

𝑃𝑐,max,𝑖(𝑘), 𝑃𝑐,𝑖(𝑘) < 𝑃𝑐,max,𝑖(𝑘) (i.e., those that can still accommodate additional charging power). For 

other EVs, they are preset to zero, 𝑝𝑖(𝑘) = 0. Then, the calculated shares are normalized: 
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Algorithm 3. Algorithm of aggregate charging power distribution over individual EVs. 

• Calculate charging power limits 𝑷𝒄,𝐦𝐢𝐧,𝒊(𝒌) and 𝑷𝒄,𝐦𝐚𝐱,𝒊(𝒌) for connected EVs (𝒏𝒄𝒃,𝒊(𝒌) = 𝟏) according 
to Eqs. (5.26) and (5.11), respectively. 

• Set priority to upper power limit: 𝑷𝒄,𝐦𝐢𝐧,𝒊(𝒌) ← 𝐦𝐢𝐧(𝑷𝒄,𝐦𝐢𝐧,𝒊(𝒌) , 𝑷𝒄,𝐦𝐚𝐱,𝒊(𝒌) ) , ∀𝒊. 

• Set individual charging powers at lower limits (if being larger than zero): 𝑷𝒄,𝒊(𝒌) ←

𝐦𝐚𝐱(𝟎, 𝑷𝒄,𝐦𝐢𝐧,𝒊(𝒌)) , ∀𝒊. 

• If ∑ 𝑷𝒄,𝒊(𝒌) > 𝑷𝒄,𝒂𝒈𝒈,𝒎𝒂𝒙
𝑵𝒗
𝒊=𝟏  holds, rescale individual charging powers as 𝑷𝒄,𝒊(𝒌) ← 𝑷𝒄,𝒊(𝒌)

𝑷𝒄,𝒂𝒈𝒈,𝒎𝒂𝒙

∑ 𝑷𝒄,𝒊(𝒌)
𝑵𝒗
𝒊=𝟏

, to 

satisfy upper constraint on aggregate charging power (5.4b). 

• Calculate remained aggregate charging power: 𝑷𝒄,𝒂𝒈𝒈,𝒓(𝒌) = 𝑷𝒄,𝒂𝒈𝒈(𝒌) − ∑ 𝑷𝒄,𝒊(𝒌)
𝑵𝒗
𝒊=𝟏 . 

• Initialize 𝒑𝒊(𝒌) = 𝟏, ∀𝒊. 

while ∑ 𝒑𝒊(𝒌)
𝑵𝒗
𝒊=𝟏 ≠ 𝟎 and 𝑷𝒄,𝒂𝒈𝒈,𝒓(𝒌) > 𝟎 

• Calculate shares 𝒑𝒊(𝒌) for all EVs (i = 1,2, …, Nv) by using Eq. (5.29). 

• Calculate normalized shares: 𝒑̅𝒊(𝒌) = {
𝒑𝒊(𝒌) ∑ 𝒑𝒊(𝒌),

𝑵𝒗
𝒊=𝟏

⁄ 𝐟𝐨𝐫 ∑ 𝒑𝒊(𝒌) > 𝟎,
𝑵𝒗
𝒊=𝟏

𝟎, 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞.
 ∀𝒊. 

• Distribute remained charging power 𝑷𝒄,𝒂𝒈𝒈,𝒓(𝒌) in dependence on 𝒑̅𝒊(𝒌) as: 

𝑷𝒄,𝒊
′ (𝒌) = 𝑷𝒄,𝒊(𝒌) + 𝒑̅𝒊(𝒌)𝑷𝒄,𝒂𝒈𝒈,𝒓(𝒌), ∀𝒊. 

• Saturate individual charging powers with respect to their upper limits: 

𝑷𝒄,𝒊(𝒌) = 𝐦𝐢𝐧 (𝑷𝒄,𝒊
′ (𝒌), 𝑷𝒄,𝐦𝐚𝐱,𝒊(𝒌)) , ∀𝒊, 

• Update remained aggregate charging power as: 

𝑷𝒄,𝒂𝒈𝒈,𝒓(𝒌) = 𝑷𝒄,𝒂𝒈𝒈(𝒌) −∑𝑷𝒄,𝒊(𝒌)

𝑵𝒗

𝒊=𝟏

 

end while 

𝑝̅𝑖(𝑘) = {
𝑝𝑖(𝑘)

∑ 𝑝𝑖(𝑘)
𝑁𝑣
𝑖=1

if ∑𝑝𝑖(𝑘) > 0,

𝑁𝑣

𝑖=1

0, otherwise,

 ∀𝑖. (5.30) 

and as such they are used for distributing the remained aggregate charging power 𝑃𝑐,𝑎𝑔𝑔,𝑟(𝑘): 

𝑃𝑐,𝑖
′ (𝑘) = 𝑃𝑐,𝑖(𝑘) + 𝑝̅𝑖(𝑘)𝑃𝑐,𝑎𝑔𝑔,𝑟(𝑘), ∀𝑖. (5.31a) 

𝑃𝑐,𝑖(𝑘) = min (𝑃𝑐,𝑖
′ (𝑘), 𝑃𝑐𝑚𝑎𝑥,𝑖(𝑘)) , ∀𝑖. (5.31b) 

Note that 𝑃𝑐,𝑖
′ (𝑘) determined by Eq. (5.31a) is used to update 𝑃𝑐,𝑖(𝑘) in Eq. (5.31b) (as the final control 

input over its preliminary value given by Eq. (5.27) and used in (5.31a), see Algorithm 3). The 
distribution procedure represented by Eqs. (5.28)-(5.31) is iteratively repeated until the remained 
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aggregate power 𝑃𝑐,𝑎𝑔𝑔,𝑟(𝑘) given by Eq. (5.28), which is yet to be distributed, is brought to zero, or 

all shares 𝑝𝑖(𝑘) become zero (∑ 𝑝𝑖(𝑘)
𝑁𝑣
𝑖=1 = 0 in Eq. (5.29), i.e., there are no EVs available for charging). 

The presented distribution algorithm can be applied both in an offline and online manner. In the offline 
case, the whole aggregate power sequence is obtained offline (e.g., by DP optimization and aggregate 
battery model) and then it is distributed over individual EVs step-by-step by using Algorithm 3 (no 
feedback present). In the online case, the distribution algorithm is performed after getting the optimal 
charging power 𝑃𝑐,𝑎𝑔𝑔(0|𝑘) by executing the MPC algorithm in the actual, kth sampling step, and using 

it to determine the individual charging power values in the same sampling step employing Algorithm 
3 (feedback is present through the MPC path). 

5.4.4 Baseline (dumb) charging strategy 

A so-called dumb charging strategy is introduced to serve as a baseline for verification of the 
developed MPC charging strategy. The idea is to charge the aggregate battery as soon as possible, 
without accounting for electricity price or production from RES. The dumb strategy is applied to both 
aggregate and distributed models. 

For the aggregate model, the aggregate charging power that brings the current aggregate SoE to 
SoEfinal (typically set to 1) is calculated by rearranging (5.1) as: 

𝑃𝑐,𝑎𝑔𝑔
′ (𝑘)

=  
𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙𝑛𝑐(𝑘 + 1) − 𝑆𝑜𝐸𝑎𝑔𝑔(𝑘)𝑁𝑣 − 𝑆𝑜𝐸𝑖𝑛,𝑎𝑣𝑔(𝑘)𝑛𝑖𝑛(𝑘) + 𝑆𝑜𝐸𝑜𝑢𝑡,𝑎𝑣𝑔(𝑘)𝑛𝑜𝑢𝑡(𝑘)

𝜂𝑐ℎ∆𝑇
 𝐸𝑚𝑎𝑥,𝑖𝑛𝑑 

(5.32) 

This power is then saturated to avoid violation of the aggregate charging power limits defined by 
(5.4): 

𝑃𝑐,𝑎𝑔𝑔(𝑘) = min(𝑃𝑐,𝑎𝑔𝑔
′ (𝑘),min (𝑛𝑐(𝑘)𝑃𝑐𝑚𝑎𝑥,𝑖𝑛𝑑, 𝑃𝑐,𝑎𝑔𝑔,𝑚𝑎𝑥) ). (5.33) 

By targeting 𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙 𝑛𝑐(𝑘 + 1) 𝑁𝑣⁄  as the aggregate SoE value in each time step, dumb charging 

strategy achieves 𝑆𝑜𝐸𝑎𝑔𝑔(𝑘) = 𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙 at the end time 𝑁𝑡 where 𝑛𝑐(𝑁𝑡) = 𝑁𝑣. Thus, it should be 

directly comparable in terms of charging cost with other charging strategies (e.g., offline DP and 
MPCs) by setting them to target the same final SoE (i.e., SoEfinal). 

For the distributed model, the dumb charging strategy sets individual charging power values in each 
time step k to their maximum values 𝑃𝑐,max,𝑖(𝑘) given by Eq. (5.11) if not violating the upper limit on 

the aggregate charging power given by Eq. (5.4b) (see the first condition below); otherwise, they are 
set to values obtained by scaling down 𝑃𝑐,max,𝑖(𝑘) in the way that satisfies the aggregate power limit 

(second condition below): 
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𝑃𝑐,𝑖(𝑘) =

{
 
 

 
 𝑃𝑐,max,𝑖(𝑘), for ∑ 𝑃𝑐,max,𝑖(𝑘)

𝑁𝑣

𝑖=1
≤ 𝑃𝑐,𝑎𝑔𝑔,max

𝑃𝑐,max,𝑖(𝑘)
𝑃𝑐,𝑎𝑔𝑔,max

∑ 𝑃𝑐,max,𝑖(𝑘)
𝑁𝑣
𝑖=1

, otherwise.
, ∀𝑖. (5.34) 

5.5 Case study 

5.5.1 Parametrization of EV fleet models 

EV fleet models described in Subsection 5.2 are parameterized by using the data recorded for a 
delivery vehicle fleet of a local retail company [14]. The data were recorded on ten mid-size Diesel 
engine-propelled delivery trucks by using GPS/GPRS equipment over a three-month period. The 
vehicles mission was to deliver cargo from a distribution centre (a depot; DC) to different sales 
centres. These trucks were virtually converted to extended range electric vehicles (EREV) with similar 
power and torque characteristics as in the real trucks [15, 20]. EREVs (denoted as EVs hereafter for 
the sake of brevity) were used instead of pure battery electric vehicles (BEV) to overcome limited 
range of BEVs, i.e., to be able to cover all recorded driving missions (both short- and long-distance 
ones). It was assumed that their charging could take place only at the DC during their parking periods 
between two driving missions. Thus, the recorded GPS positions were used to detect time periods 
when vehicles had been located within the DC and thus hypothetically connected to the grid and 
available for charging. From this data, the following time profiles of EV fleet models from Subsection 
5.1 could be derived: 𝑛𝑖𝑛, 𝑛𝑜𝑢𝑡, 𝑛𝑐 , 𝑛𝑐𝑏,𝑖, 𝑛𝑐𝑠,𝑖, 𝑛𝑖𝑛,𝑖, 𝑛𝑜𝑢𝑡,𝑖, where  𝑖 = 1,2, … ,𝑁𝑣. 

The above-described setup has been adopted for the case study presented herein, with the following 
notes: (i) a one week period is selected out of the total three-month period, and (ii) the time 
discretization is reduced from 1 h to 15 minutes, i.e., ∆𝑇 = 0.25 h. To ensure that each day starts and 
ends with all vehicles being parked within the DC, the week is set to start at 5 a.m. of the first 
recording day. This is illustrated by the time profile of the number of vehicles within the DC, 𝑛𝑐(𝑡), 
shown in in Fig. 38, which is determined from 𝑛𝑖𝑛(𝑘) and 𝑛𝑜𝑢𝑡(𝑘) (in the same way as defined by Eq. 
(5.23) for the MPC horizon): 

𝑛𝑐(𝑘 + 1) = 𝑛𝑐(𝑘) + 𝑛𝑖𝑛(𝑘) − 𝑛𝑜𝑢𝑡(𝑘), 𝑘 = 0,1, … ,𝑁𝑡 − 1, 𝑛𝑐(0) = 𝑁𝑣. (5.35) 

The profiles shown in Fig. 38 reveal a repetitive fleet activity over workdays (from Monday to Friday) 
with the peak activity occurring around 10 a.m., and the reduced activity appearing over weekend 
days (Saturday and Sunday). 
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Fig. 38 Time profiles of aggregate EV fleet model related to number of connected EVs (nc), number of 
arriving EVs (nin), and number of departing EVs (nout) over a one-week period (total number of EVs within 

fleet is 10, Nv = 10) 

The backward-looking type of EREV model given in series configuration is shown in Fig. 39 (see [20] 
and [15] for more details). The main propulsion comes from the bigger electric machine (denoted as 
Motor), while the internal-combustion engine drives the generator to sustain the battery SoC to its 
lower limit value, thus providing the vehicle range extension. The battery capacity is set to 72.67 
kWh. The control strategy is assumed to operate in the so-called CD/CS (Charge Depleting/Charge 
Sustaining) regime, where CD corresponds to pure electric driving (i.e., 𝜔𝑒 = 0 and 𝜏𝑒 = 0), while CS 
relates to hybrid driving. The control in CS regime is based on an equivalent consumption minimization 
strategy (ECMS), which sets the engine operating point, 𝜔𝑒 and 𝜏𝑒, to minimize an equivalent fuel 
consumption cost. 

The recorded driving cycles are divided into ten groups with respect to their travelled distance, and 
for each group one statistically representative synthetic driving cycle is generated by using Markov 
chain methodology [14]. The EREV model is simulated over each synthetic driving cycle for nine 
different initial battery state-of-charge (SoC) values, 𝑆𝑜𝐶𝑜𝑢𝑡 = {0.2, 0.3, … ,1}, resulting in a grid (10x9) 
of SoC-at-destination (𝑆𝑜𝐶𝑖𝑛) and fuel consumption (𝑉𝑓) values shown in Fig. 40. Note that the 

simulation model concerns a more accurate vehicle battery model expressed in SoC rather than SoE 
state variable, while the optimization and control algorithms are based on SoE state equations, where 
the SoE is equalized with the SoC when parameterizing the vehicle energy demand model for 
optimization/control. Note also that 𝑆𝑜𝐶𝑖𝑛 ends up around 0.3 for larger travelled distances and/or 
lower initial SoCs, which corresponds to lower limit of SoC sustained within the CS regime. 
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Fig. 39 Block diagram of backward-looking model of Extended Range Electric Vehicle (EREV) 

 

 

Fig. 40 Response surface-based transport demand model providing SoC-at-destination (SoCin) when 
arriving to DC (a), and fuel consumption (Vfuel) of related driving mission of length d 

The SoE time profiles of individual EVs, 𝑆𝑜𝐸𝑖𝑛,𝑖(𝑘) and 𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑘), are derived by using the transport 

demand model from Fig. 40 and the expressions (5.20). According to Eq. (5.20), SoE of departing EVs, 
𝑆𝑜𝐸𝑜𝑢𝑡,𝑖, is set to 1 whenever it is possible if it is not limited by the individual charging power limit. 

The average SoE profiles of departing and arriving EVs, required by the aggregate battery model, are 
calculated from individual profiles by using Eq. (5.22) and they are shown in Fig. 41. 
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Fig. 41 Average SoE of EVs departing from DC (𝑆𝑜𝐸𝑜𝑢𝑡,𝑎𝑣𝑔) and arriving to DC (𝑆𝑜𝐸𝑖𝑛,𝑎𝑣𝑔) 

The two-tariff electricity price model present in Croatia is represented by the plot shown in Fig. 42. 
The RES power time-profile shown in Fig. 43 relates to power production from solar panels 
hypothetically installed on the DC roofs. It was obtained from irradiation of global radiation (kW/m2) 
taken from Meteonorm software for the particular location of DC, which is multiplied by the assumed 
solar panel surface equal to 2000 m2 [20]. 
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Fig. 42 Time profile of two-tariff electricity price over one-week period (vertical dashed lines denote 
boundaries between days starting at 5 a.m.) 

 

Fig. 43 Time profile of hypothetical power production from solar panels over one-week period 

The remaining EV fleet model and simulation parameters are set to: ∆𝑇 =  0.25 h, 𝑁𝑝 = 96,𝑁𝑣 = 10, 

𝐸𝑚𝑎𝑥,𝑖𝑛𝑑 = 72.67 kWh, 𝜂𝑐ℎ = 0.92, 𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙 = 0.95, 𝑃𝑐,𝑎𝑔𝑔,max = 150 kW, 𝑁𝑡 = 672, 𝑃𝑐𝑚𝑎𝑥,𝑖𝑛𝑑 = 25 kW. 

To solve the DP optimization problem for the case of the aggregate battery model, the aggregate SoE 
and charging power are quantized as 𝑆𝑜𝐸𝑎𝑔𝑔 ∈ {0, 0.01,… ,1} and 𝑃𝑐,𝑎𝑔𝑔 ∈ {0, 2, … , 150} kW, 

respectively (see Subsection 5.3). In the case of separate DP optimizations for individual EVs, these 
quantization levels are set to: 𝑆𝑜𝐸𝑎𝑔𝑔 ∈ {0, 0.01,… ,1} and 𝑃𝑐,𝑎𝑔𝑔 ∈ {0, 0.5, … , 25} kW. 

5.5.2 Results for case of no RES consideration 

Firstly, the aggregate battery model (5.1)-(5.4) is used as an EV fleet simulation model for conducting 
the offline DP optimization and testing the online MPC charging strategies in the case of no electric 
power production from RES (see Fig. 44 for illustration of the latter). The MPC charging on receding 
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horizon is denoted as MPC-REC, while the one related to diminishing horizon is referred to as MPC-
DIM. The offline DP and the baseline (dumb) charging strategy relying on Eq. (5.33) are denoted as 
DP-OFF and DUMB, respectively. 

As MPC-REC does not have requirement on SoE at the end of prediction horizon, it is switched to 
MPC-DIM when its prediction horizon reaches the end of simulation time (i.e., when reaching the last 
day of a week), to force SoE to reach the same final target value of 0.95 as in the case of other 
charging optimization/strategies, and thus facilitate comparative analyses. 
 

 

Fig. 44 Online MPC applied to aggregate EV fleet simulation model 

Figs. 45 and 46 show the obtained aggregate SoE and charging power profiles, which reveal that 
MPC-REC profiles closely align with those of the DP-OFF benchmark. MPC-DIM provides somewhat 
different profiles, which is because its formulation includes the constraint on final SoE at the end of 
each day to be equal to 0.95, which is not present in MPC-REC and DP-OFF. However, those 
differences in time profiles do not cause any notable difference in charging costs of DP-OFF, MPC-
REC, and MPC-DIM, as evidenced in Table 13. Note also that all approaches provide the same fuel 
consumption calculated according to the map from Fig. 40b, which is dictated by the same SoE time 
profiles, SoCin,avg and SoCout,avg, used in the aggregate model. 

The DUMB charging approach brings the SoE very close to its upper limit, which is due to charging 
with the maximum power possible (see Subsection 5.4). Unawareness of electricity price is reflected 
in relatively high charging power levels in the periods of high electricity cost, which results in 
approximately 20% higher charging cost when compared to other approaches (Table 13). 
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Fig. 45 Aggregate SoE obtained by different charging approaches applied to aggregate battery model, 
with lower plot representing a zoom-in section of upper plot related to first day profiles 

Table 13 Optimization and simulation results obtained for case of aggregate model and no RES 
considered 

Aggregate 
model, one 

week 

Initial 
SoC [-] 

Final 
SoC [-] 

Fuel 
consumption [L] 

Total charging 
energy [kWh] 

Total cost of 
charging [EUR] 

DP-OFF 0.95 0.95 

4259.8 

6935.0 (0.0%) 515.4 (0.0%) 

DUMB 0.95 0.95 6935.0 (0.0%) 617.6 (+19.8%) 

MPC-REC 0.95 0.95 6935.0 (0.0%) 515.4 (0.0%) 

MPC-DIM 0.95 0.95 6935.0 (0.0%) 515.4 (0.0%) 
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Fig. 46 Aggregate charging power obtained by different charging approaches applied to aggregate battery 
model, with lower plot representing a zoom-in section of upper plot related to first day profiles 

Furthermore, the considered charging approaches have been tested on the distributed vehicle fleet 
model (5.8)-(5.11). The DP-OFF aggregate charging power profile is distributed over individual EVs 
by using the distribution algorithm (Algorithm 3 in Subsection 5.4), while DUMB charging is applied 
directly on the distributed model based on charging power values calculated by Eq. (5.34). Both MPC-
REC and MPC-DIM are applied in an online manner while simulating the fleet distributed model, i.e., 
in each time step the DP optimization is conducted on the prediction horizon by using the aggregate 
model and the obtained aggregate charging power in the actual time step is distributed over individual 
EVs by the distribution algorithm (see Fig. 47). 

Fig. 48 shows the aggregate SoE and charging power time profiles obtained by DP-OFF prior and 
after performing distribution, where it can be observed that the distribution does not perturb the 
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aggregate charging power profile significantly. This is confirmed by a relatively high correlation index 
of the two power profiles equal to 0.78 (correlation index of SoE profiles is equal to 0.91; its ideal 
value is 1 on the range [0,1]). 
 

 

Fig. 47 Online MPC applied to distributed EV fleet simulation model 
 

 

Fig. 48 Comparative plots of aggregate SoE and charging power profiles obtained directly by DP-OFF 
(blue) and after applying distribution algorithm and aggregating resulting profiles (red) 
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The first row of Table 14 shows comparative DP optimization results for the cases of using the 
aggregate model (AGG) and distributing the aggregate charging power over individual EVs (DISTR). 
These results indicate that distributing of the aggregate power typically results in higher charging 
costs (by 10%), with negligible reduction of total charging energy (1.5%) and related increase in total 
fuel consumption (0.2%). MPC-DIM in the case of distributed model ends up with the final SoE at the 
target value of 0.95 due to its online execution and related feedback effects, which is not the case 
with DP-OFF-DISTR as its charging power is distributed offline, i.e., in an open-loop manner. Certain 
differences between the aggregate and distributed models is primarily manifested in charging costs, 
and they can be attributed to inaccuracies of the aggregate battery model, which cannot fully capture 
distributed model dynamics. 

Table 14 Comparative performance metrics related to results obtained by using aggregate model and 
distributed model (no RES considered) 

One week 
period 

EV fleet 
model 

Initial 
SoE [-] 

Final 
SoE [-] 

Total fuel 
consumption [L] 

Total charging 
energy [kWh] 

Total cost of 
charging [EUR] 

DP-OFF 
AGG 0.95 0.95 4259.8 (0.0%) 6935.0 (0.0%) 515.4 (0.0%) 

DISTR 0.95 0.85 4266.6 (+0.2%) 6830.6 (-1.5%) 565.3 (+9.7%) 

DUMB 
AGG 0.95 0.95 4259.8 (0.0%) 6935.0 (0.0%) 617.6 (0.0%) 

DISTR 0.95 0.96 4273.4 (+0.3%) 6894.0 (-0.6%) 605.1 (-2.0%) 

MPC-REC 
AGG 0.95 0.95 4259.8 (0.0%) 6935.0 (0.0%) 515.4 (0.0%) 

DISTR 0.95 0.95 4267.8 (+0.2%) 6906.1 (-0.4%) 564.1 (+9.5%) 

MPC-DIM 
AGG 0.95 0.95 4259.8 (0.0%) 6935.0 (0.0%) 515.4 (0.0%) 

DISTR 0.95 0.95 4267.8 (+0.2%) 6906.1 (-0.4%) 550.6 (+6.8%) 

 

The DP optimizations are then performed for each EV separately by using the model (5.5)-(5.7), to set 
a benchmark on the distributed level. The related results are denoted below by the acronym DP-IND. 
Fig. 49 shows the optimal SoE and charging power profiles for EV #1. It may be observed that SoE 
increases almost to the upper limit of 1 if the parking period (ncb =1) is long enough (red line in Fig. 
49). On the contrary, if this interval is short, the battery is just a partially charged (𝑆𝑜𝐸 < 1) even 
though the maximum charging power is applied (see for instance SoE values and charging power when 
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departing from DC around 40th hour). It should be recalled that the upper limit on the aggregate 
charging power, given by Eq. (5.4b), is not included here to make the distributed system optimization 
feasible (see Subsection 5.4), and the obtained results may be somewhat overoptimistic for that 
reason (due to less constraints involved). However, the aggregate charging power profile obtained 
from individual profiles by using Eq. (5.13) and shown in Fig. 50 reveals that this violation turns out 
to occur only in several time steps (out of 672). For that reason, these results may be considered as 
the (nearly) globally optimal benchmark on the distributed level in the selected settings of the 
maximum aggregate charging power. 

 
Fig. 49 DP optimized time profiles of SoE and charging power for EV #1 (upper constraint corresponds to 

ncb from Eq. (5.6)) 
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Fig. 50 Aggregate charging power obtained by DP optimization of individual vehicle profiles and 
aggregating them by using (5.13) (no RES considered; red circles denote points where aggregate charging 

power exceeds imposed maximum grid power of 150 kW) 

Table 15 provides the DP results for each EV separately and the corresponding lump sum results. The 
lump sum results from Table 15 are included in Table 16 along with the results related to other 
charging approaches. All methods have very similar fuel consumptions and cumulative charging 
energies, thus making their charging costs directly comparable. The charging costs of DP-OFF and 
MPC-REC turns out to be only up to 2% higher than the DP-IND costs, while that of MPC-DIM is 
even 0.8% lower, confirming that they are all close to the feasible global optimum, despite the fact 
that they significantly lag the charging costs obtained when applied at the aggregate battery model 
level (Table 14). On the other hand, when applying DUMB charging, the charging cost becomes higher 
than the DP-IND cost by 9%. The fact that MPC-DIM provides even lower cost than DP-IND indicates 
that there is still some room for improvement of DP-IND charging results via using finer quantization 
of SoE and charging power within DP optimization. 
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Table 15 Optimization results for each EV obtained by separate DP optimizations (DP-IND; no RES 
considered) 

EV # 
Initial 

SoC [-] 
Final 

SoC [-] 
Fuel 

consumption [L] 
Total charging 
energy [kWh] 

Total cost of 
charging [EUR] 

1 0.95 0.95 839.4 6884.4 51.9 

2 0.95 0.95 303.0 738.6 57.7 

3 0.95 0.95 479.6 832.4 65.9 

4 0.95 0.95 391.7 813.9 65.5 

5 0.95 0.95 518.9 617.0 49.8 

6 0.95 0.95 305.2 568.1 46.8 

7 0.95 0.95 201.6 583.6 52.1 

8 0.95 0.31 587.3 767.0 59.5 

9 0.95 0.95  454.0 888.5 68.5 

10 0.95 0.95 179.3 446.0 37.2 

∑ 9.50 8.86 4260.0 6884.4 554.9 

 

Table 16 Comparative performance metrics related to results obtained by applying different approaches 
to distributed model (no RES included) 

One week period, 
DISTR model 

Total fuel 
consumption [L] 

Total charging 
energy [kWh] 

Total cost of 
charging [EUR] 

Specific cost of 
charging [EUR/kWh] 

DP-IND 4260.0 (0.0%) 6884.4 (0.0%) 554.9 (0.0%) 0.0806 (0.0%) 

DP-OFF 4266.6 (+0.2%) 6830.6 (-0.8%) 565.3 (+1.9%) 0.0828 (+2.7%) 

DUMB 4273.4 (+0.3%) 6894.0 (+0.1%) 605.1 (+9.1%) 0.0878 (+8.9%) 

MPC-REC 4267.8 (+0.2%) 6906.1 (+0.3%) 564.1 (+1.7%) 0.0817 (+1.4%) 

MPC-DIM 4267.8 (+0.2%) 6906.1 (+0.3%) 550.6 (-0.8%) 0.0797 (-1.1%) 
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5.5.3 Results for case of RES consideration 

When including the power production from RES, the DP-OFF optimization tends to shift charging 
closer to solar noon where the RES production is around its peak (see Fig. 51). It is interesting to note 
that the (aggregate) battery is not fully charged at 5 a.m. unlike the case when no RES production is 
included. This can be explained by the fact that the optimizer leaves the battery at lower SoE value 
to charge it when RES power is available (note that the local-RES power price is set to zero). 

Table 17 gives the charging results for the case of aggregate model (see Fig. 44), where it can be 
observed that the cost of DUMB approach, and even MPC-DIM, is now multiple times higher than 
that of DP-OFF. MPC-DIM performs much worse than in the case when no RES was included (cf. 
Table 13) because of the requirement on the SoE to be equal 0.95 at 5 a.m. of each day, which 
significantly limits the optimisation freedom in the presence of RES charging potential later in the day. 
Since MPC-REC does not involve this constraint, its performance does not degrade; in fact, it provides 
(almost) the same results as DP-OFF. 

Table 18 gives comparative results obtained by applying different charging methods for the cases of 
using aggregate (AGG) and distributed model (DISTR). The fuel consumptions and charging energies 
are similar in all cases, while the increase in the charging cost when the distributed model is used is 
more pronounced than in the case of no RES considered (cf. Tables 18 and 14). The only exception is 
DUMB strategy, whose charging cost is very similar in the case of both scenarios, but it is very high 
when compared to other charging methods (see also Table 20). These results can be explained by the 
fact that the relatively narrow RES power production peaks mostly occur around the hours of elevated 
EVs activity (cf. Figs. 38 and 43), i.e., when EVs are typically less available for charging. For this reason, 
perturbation of charging power profiles, caused by aggregate charging power distribution to 
individual EVs, results in decrease of employed RES energy and leads to significantly increased costs. 

Table 17 Optimization and simulation results obtained for case of aggregate model and RES considered 

Aggregate model,  
one week 

Initial 
SoC [-] 

Final 
SoC [-] 

Fuel 
consumption [L] 

Total charging 
energy [kWh] 

Total cost of 
charging [EUR] 

DP-OFF 0.95 0.95 

4259.8 

6935.0 (0.0%) 99.0 (0.0%) 

DUMB 0.95 0.95 6935.0 (0.0%) 324.4 (+228) 

MPC-REC 0.95 0.95 6935.0 (0.0%) 99.0 (0.0%) 

MPC-DIM 0.95 0.95 6935.0 (0.0%) 244.5 (+147%) 
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Fig. 51 Comparative DP-OFF optimization results for the cases with and without RES production 
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Table 18 Comparative performance metrics related to results obtained by using aggregate model and 
distributed model (RES is considered) 

One week 
period 

EV fleet 
model 

Initial 
SoC [-] 

Final 
SoC [-] 

Total fuel 
consumption [L] 

Total charging 
energy [kWh] 

Total cost of 
charging [EUR] 

DP-OFF 
AGG 0.95 0.95 4259.8 (0.0%) 6935.0 (0.0%) 99.0 (0.0%) 

DISTR 0.95 0.85 4262.4 (+0.1%) 6845.5 (-1.3%) 193.2 (+95.2%) 

DUMB 
AGG 0.95 0.95 4259.8 (0.0%) 6935.0 (0.0%) 324.4 (0.0%) 

DISTR 0.95 0.96 4273.4 (+0.3%) 6894.0 (-0.6%) 321.1 (-1.0%) 

MPC-REC 
AGG 0.95 0.95 4259.8 (0.0%) 6935.0 (0.0%) 99.0 (0.0%) 

DISTR 0.95 0.95 4262.4 (+0.06%) 6925.6 (-0.1%) 176.1 (+77.9%) 

MPC-DIM 
AGG 0.95 0.95 4259.8 (0.0%) 6935.0 (0.0%) 244.5 (0.0%) 

DISTR 0.95 0.95 4262.4 (+0.1%) 6925.6 (-0.1%) 276.8 (+13.2%) 

 

Similarly, as in the case of not using RES, the charging optimization of individual EVs is performed by 
DP and the distributed model (5.5) (again, denoted as DP-IND), to establish a kind of direct 
benchmark. The results are presented in Table 19. Implications of not using joint constraint (5.4b) on 
the aggregate charging power become more pronounced in the no-RES case due to neglecting RES 
power profile as a shared resource of all EVs (i.e., each EV is set to have the whole RES power profile 
at its disposal, which is not realistic). The aggregate charging power (Fig. 52), obtained through 
aggregation of the individual DP-IND profiles, indicates that the aggregate charging power limit (5.4b) 
is now violated in more time steps than in the case of not using RES (cf. Fig. 50). Nevertheless, the 
DP-IND results still provide certain orientation on the globally optimal charging cost, and they are, 
thus, further used in the comparative analyses. 
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Table 19 Optimization results for each EV obtained by separate DP optimizations (DP-IND; RES is 
considered) 

EV # 
Initial 

SoC [-] 
Final 

SoC [-] 
Fuel 

consumption [L] 
Total charging 
energy [kWh] 

Total cost of 
charging [EUR] 

1 0.95 0.95 839.4 629.3 10.3 

2 0.95 0.95 303.0 738.7 24.9 

3 0.95 0.95 479.6 832.4 29.6 

4 0.95 0.95 391.7 813.9 26.3 

5 0.95 0.95 518.9 617.1 12.2 

6 0.95 0.95 305.2 568.2 6.1 

7 0.95 0.95 201.6 583.7 13.4 

8 0.95 0.31 587.3 767.0 28.2 

9 0.95 0.95 454.0 888.5 27.9 

10 0.95 0.95 179.3 446.1 5.1 

∑ 9.50 88.6 4260.0 6884.9 184.0 
 

 

Fig. 52 Aggregate charging power obtained by DP optimization of individual profiles and aggregating 
them by using Eq. (5.13) for case of RES included (red circles denote points where aggregate charging 

power exceeds imposed maximum grid power of 150 kW) 
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The aggregated DP-IND results from Table 19 are used in Table 20 as the benchmark for other 
charging methods applied on the same distributed model (the results taken from Table 18). The DP-
OFF approach gives around 6% higher charging cost than the DP-IND one, which may be attributed 
to the more constrained optimization in the case of DP-OFF and the suboptimality of the distribution 
algorithm. MPC-DIM and DUMB methods have again very high charging costs, which is due to the 
requirement on the final SoE set for each day in the former case, and the algorithm insufficiency (in 
terms of not reflecting the RES potential) in the latter case. The MPC-REC strategy does not involve 
the final SoE condition and, thus, significantly outperforms the MPC-DIM method. Furthermore, by 
incorporating feedback via its online execution, it mitigates the aggregate model deficiencies and, 
thus, achieves lower cost when compared to DP-OFF method, whose aggregate charging power 
distribution is performed offline. The fact that MPC-REC, actually, provides 5% lower charging cost 
when compared to DP-IND again indicates certain room for improvement of DP-IND results via finer 
quantization of SoE and charging power. Indeed, reducing the quantization step of charging power 
Pc,i from 500 W to 100 W turns out to result in 4.7% cost reduction (from 184.0 to 175.3 EUR), which 
is now slightly lower than MPC-REC cost. 

Table 20 Comparative performance metrics related to results obtained by applying different approaches 
to distributed model (RES is included) 

One week period, 
DISTR model 

Total fuel 
consumption [L] 

Total charging 
energy [kWh] 

Total cost of 
charging [EUR] 

Specific cost of 
charging [EUR/kWh] 

DP-IND 4260.0 (+0.0%) 6884.9 (+0.0%) 184.0 (+0.0%) 0.0267 (+0.0%) 

DP-OFF 4262.4 (+0.1%) 6845.5 (-0.6%) 193.2 (+5.0%) 0.0282 (+5.6%) 

DUMB 4273.4 (+0.3%) 6894.0 (+0.1%) 321.1 (+74.5%) 0.0466 (+74.5%) 

MPC-REC 4262.4 (+0.1%) 6925.6 (+0.6%) 176.1 (-4.3%) 0.0254 (-4.9%) 

MPC-DIM 4262.4 (+0.1%) 6925.6 (+0.6%) 276.8 (+50.4%) 0.0400 (+49.8%) 

 

5.6 Short conclusion 

An offline optimization tool for EV fleet charging has been first developed based on the dynamic 
programming (DP) algorithm to set a performance benchmark. An online hierarchical EV charging 
management method has then been proposed to optimize the aggregate charging power profile by 
means of a model predictive control (MPC) algorithm and distribute this profile over individual EVs 
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by using a heuristic allocation algorithm based on charging priorities. The main benefit of the proposed 
method is that it can be applied to large-size EV fleets, while providing a nearly optimal solution. 

The effectiveness of the proposed charging method has been demonstrated through a delivery 
electric vehicle fleet study, where a Extended Range Electric Vehicle (EREV) is concerned, as it can 
cover all driving missions involved (short- and long-distance ones). It has been demonstrated that 
both MPC strategies considered (with receding horizon and shrinking horizon) provide almost the 
same results on the aggregate battery level when compared to the offline DP benchmark for the case 
of no power production from renewable energy sources (RES), while the cost is around 17% lower 
when compared to the baseline (dumb) strategy involving charging EV fleet with a maximum power 
when possible. When used in combination with the heuristic allocation algorithm within the more 
realistic distributed vehicle fleet model, both MPC strategies result in charging costs that are close to 
the DP benchmark obtained on the distributed EV fleet model. At the same time, unlike the offline-
applied (open-loop) distribution algorithm, the MPC strategies satisfy the target aggregate battery 
state-of-energy (SoE) owing to its feedback control character. When including the production from 
RES, the MPC variant based on receding horizon optimization overperforms its shrinking-horizon 
counterpart by the large margin. This is because the latter is overly restricted by the battery SoE 
constraint at the end of diminishing horizon for each operating day, thus not allowing for full 
exploitation of the RES potential. 

In the remaining course of WP2.1 activity, the developed receding horizon-based MPC strategy will 
be accommodated and demonstrated within the airport e-hub planning case study. 

6 E-bus scheduling optimization 

6.1 Introduction 

Solving an electric bus scheduling problem yields optimal scheduling of electric buses to minimize the 
fleet size (i.e., the total number of e-buses), while satisfying the predetermined service trips and 
timetables, and accounting for the e-bus range and charging restrictions. The scheduling involves 
optimal allocation of electric buses to service trips and the determination of when and where each 
bus should be charged. 

This section presents a thorough approach to e-bus scheduling optimization, which results in a Pareto 
frontier in two conflicting criteria being minimized: (i) the total number of buses required to serve the 
predetermined routes and (ii) the excess of distance travelled (so-called deadhead distance). These 
criteria reflect the city bus fleet investment and operational costs, respectively. The optimization 
strategy is executed in two phases: 1) finding the minimal number of buses, and 2) gradually 
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incrementing the number of buses from the minimal one and minimizing the deadhead distance. Two 
optimization methods are proposed: mixed integer linear programming (MILP) and genetic algorithm 
(GA), where the former provides the optimal solution but it is limited to small-scale problems (fleets), 
while the latter can deal with large fleets but generally results in a nearly optimal solution. The 
underlying MILP formulation has been adopted from [16], and then extended by adding constraints 
to ensure the buses are fully charged by the end of each day (charge sustaining condition), while 
locally considering the state of energy for each bus, the rated power of individual chargers, and the 
specific number of buses that can be charged at each station, thus underscoring the non-uniformity 
across buses and chargers. The optimization approach is demonstrated on a custom-generated 
dataset reflecting characteristics of real-world city bus transport systems and is implemented in 
Python programming language. 

The subsequent subsections are organized as follows. Subsection 6.1 introduces the e-bus scheduling 
framework and formally defines the scheduling problem. Subsection 6.2 presents the MILP 
formulation, while Subsection 6.3 explores the GA approach. Subsection 6.4 discusses the 
optimization results and compares the MILP and GA results. Concluding remarks are given in 
Subsection 6.5. 

Note: The work presented in this section has been disseminated through the following conference 
papers, which also include a methodology state-of-the-art review and elaborates on the contributions 
of the approach proposed: 

Z. Dabčević, B. Škugor, J. Deur, “Pareto Optimization of Electric City Bus Scheduling”, 18th Conference on 
Sustainable Development of Energy, Water and Environment Systems (SDEWES), Dubrovnik, Croatia, 
2023. 

6.2 Problem definition 

6.2.1 Electric city bus scheduling framework 

Electric bus scheduling poses several challenges, particularly when buses operate on partial charges 
and require charging at both main depots and designated route stops (end stations). Moreover, 
different charging stations can have different values of (i) maximum charging power and (ii) capacities 
to handle buses simultaneously. A general case of uninterrupted, full day operation satisfying the 
charging sustaining condition is concerned, as opposed to special cases based on, for instance, 
operation pauses for depot slow charging during night. It is assumed that the bus lines, timetables, 
location of charging stations and the number of charging spots per charger are predetermined. 
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Fig. 53 illustrates the developed e-bus scheduling optimization process, which starts by minimizing 
the number of electric buses needed to satisfy the predetermined timetables. The minimum fleet size 
is typically associated with a long deadhead distance, i.e. the total distance travelled by empty buses 
to switch between different lines (i.e., their end stations) to serve them and/or recharge on their 
charging stations. In other words, the minimum bus fleet investment cost is compromised by a higher 
operating cost (e.g., higher energy and maintenance costs). In order to obtain a set of optimal solutions 
in both criteria, i.e. to generate a Pareto frontier, the number of buses is incremented by one and a 
deadhead minimization problem is solved. The process continues until the deadhead distance 
saturates to its minimum value. 

 

Fig. 53 Flowchart of e-bus scheduling sequential optimization process 

When optimizing the schedule, it is imperative to address both conventional scheduling constraints 
and those that are unique to electric vehicles. The conventional constraints encompass the following: 

1. Every service trip is allocated to only one vehicle. 
2. Each vehicle follows a feasible sequence of service trips, meaning the order and arrangement 

of trips for each vehicle must be logical and achievable within given time frames and 
operational conditions. 
 

Electric vehicles bring additional constraints related to battery state-of-energy (SoE) limits: 

1. The SoE must be high enough to complete the service trip or reach the nearest depot or 
charging station. 
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2. Buses can be recharged only at specific, predetermined charging station locations, and the 
battery cannot exceed its maximum value. 

3. Only a limited number of buses can be recharged at a charging station at the same time 
(depending on the predetermined number of charging spots). 

4. Each bus must finish its day with a fully charged battery, i.e. the final SoE must be equal to the 
initial SoE assumed to be at the maximum level (charge sustaining condition). 

6.2.2 Formal problem formulation 

Let 𝑁 represent the set of service trips awaiting for scheduling, and let 𝐾 represent the set of available 
vehicles, where every vehicle 𝑘 ∈ 𝐾 carries a battery defined by its minimal and maximal SoE, 𝑆𝑜𝐸𝑚𝑖𝑛

𝑘  
and 𝑆𝑜𝐸𝑚𝑎𝑥𝑘 , respectively. For optimization to yield a feasible solution, the initial set of vehicles 𝐾 
should be set at a sufficiently high level. Distinct from the set 𝑁 there are two specific points: 𝐷0 and 
𝐷𝑛. 𝐷0 marks the depot starting position where vehicles initiate their routes, while 𝐷𝑛 indicates the 
concluding point where vehicles conclude their service trips and revert to the depot. Each service trip, 
denoted by index 𝑖 in the set 𝑁, possesses the following distinct attributes: 

• starting time: 𝑠𝑖,  
• duration: 𝑡𝑖,  
• energy required: 𝑐𝑖, 
• starting 𝑆𝑖 and end location 𝐸𝑖. 

Moreover, each trip 𝑖 has a defined set of feasible succeeding service trips, 𝐹(𝑖), where a service trip 
𝑗 is deemed to feasibly succeed a service trip 𝑖 if the condition 𝑠𝑖 + 𝑡𝑖 + 𝑡𝑖𝑗 ≤ 𝑠𝑗 is satisfied. Here, 𝑡𝑖𝑗 

marks the time needed to transit from the endpoint of trip 𝑖 to the starting point of trip 𝑗, while the 
energy consumed during this transit period is quantified by 𝑐𝑖𝑗. A symmetrical set, 𝐵(𝑖), lists trips 𝑗 

that can precede trip 𝑖: 𝑠𝑗 + 𝑡𝑗 + 𝑡𝑖𝑗 ≤ 𝑠𝑖. 

Additionally, a set 𝑅 encompasses all charging stations. Each charging station 𝑟 ∈ 𝑅, is distinguished 
by:  

• Its location: situated either at starting or end stations of trips (𝑆𝑖, 𝐸𝑖) or at the depot (𝐷0, 𝐷𝑛), 
• Charging power 𝑞𝑟: (in Wh/per unit time) at which an electric bus is recharged, 
• Charging spot capacity 𝑁𝑟: maximum number of buses that a charging station can handle at 

once, based on the available charging spots. 

The constants 𝑡𝑖𝑟 and 𝑡𝑟𝑗 stand for the time required to move from the end of a service trip i to a 

charger r and from the charger r to the service trip j, respectively. The energy costs associated with 
these routes are denoted by 𝑐𝑖𝑟 and 𝑐𝑟𝑗. 
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Furthermore, each charger 𝑟 possesses a charging event set, 𝑇𝑟, equivalent in count to the number of 
service trips. These charging events effectively provide a time discretization of the transport system 
by marking potential start or end times for charging. Specifically, the beginning time 𝑠𝑟𝑡 for charging 
event 𝑡 from service trip 𝑖 is defined as 𝑠𝑟𝑡 = 𝑠𝑖 + 𝑡𝑖 + 𝑡𝑖𝑟, where charging events are organized 
chronologically by start times for each charger. 

Moreover, to enhance optimization efficiency, service trips are aligned with charging events. To 
capture these relationships, specific sets are defined for each charger 𝑟 ∈ 𝑅, each charging event 𝑡 ∈
𝑇𝑟 on charger 𝑟, and each service trip 𝑖 ∈ 𝑁: 

• 𝐹𝑐(𝑟, 𝑖) represents charging events that are initiated after the trip 𝑖 has reached the charger 𝑟: 
𝑠𝑟𝑡 ≥ 𝑠𝑖 + 𝑡𝑖 + 𝑡𝑟𝑖, 

• 𝐵𝑐(𝑟, 𝑖) denotes charging events that occur before the trip 𝑖 reaches the charger 𝑟, 
• 𝐹𝑖(𝑟, 𝑡) indicates trips starting after the charging event 𝑡: 𝑠𝑖 ≥ 𝑠𝑟𝑡 + 𝑡𝑖𝑟, 
• 𝐵𝑖(𝑟, 𝑡) captures trips ending before the charging event 𝑡 at the charger 𝑟. 

Based on the above foundational elements, several decision variables to be optimized have been 
introduced in the system: 

• 𝑥𝑖𝑗
𝑘 : Binary decision variable indicating whether the service trip 𝑗 ∈ 𝑁 succeeds the service trip 

𝑖 ∈ 𝑁 using the vehicle 𝑘 ∈ 𝐾, valid only if 𝑗 ∈ 𝐹(𝑖). 
• 𝑦𝑖𝑟𝑡

𝑘 : Binary decision variable determining if the vehicle 𝑘 ∈ 𝐾 recharges at the event 𝑡 ∈ 𝑇𝑟 on 
the charger spot 𝑟 ∈ 𝑅 after completing the service trip  𝑖 ∈ 𝑁. 

• 𝑧𝑟𝑡𝑗
𝑘 : Binary decision variable marking if the vehicle 𝑘 ∈ 𝐾 undertakes the service trip 𝑗 ∈ 𝑁 after 

charging at the event 𝑡 ∈ 𝑇𝑟 on the charger 𝑟 ∈ 𝑅. 
• 𝑤𝑟𝑡

𝑘 : Binary decision variable signifying if the vehicle 𝑘 ∈ 𝐾 continues charging at the 
subsequent event 𝑡 + 1 ∈ 𝑇𝑟 on the charger 𝑟 ∈ 𝑅 after charging at charging event 𝑡 ∈ 𝑇𝑟 on 
the same charger. 

Fig. 54 visualizes the role of above decision variables and the overall scheduling mechanism. 
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Fig. 54 Visualization of vehicle scheduling problem formulation 
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The battery SoE of kth bus is defined by variables 𝑒𝑖
𝑘 and 𝜀𝑟𝑡𝑘 . The variable 𝑒𝑖

𝑘 signifies the battery SoE 
of the bus just before starting service trip 𝑖 ∈ 𝑁, ensuring the bus has enough charge for the trip. On 
the other hand, 𝜀𝑟𝑡𝑘  represents the battery SoE before it begins charging at event 𝑡 ∈ 𝑇𝑟 on charger 
𝑟 ∈ 𝑅. This not only indicates the battery depletion level but also, when compared to SoE upper limit 
𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 , helps determine the necessary charging amount and duration. 

6.3 Mixed-integer linear programming formulation 

By utilizing mathematical optimization based on the Mixed Integer Linear Programming (MILP) 
algorithm, a structured approach for solving the bus scheduling problem defined in Subsection 6.2 
and Fig. 54 is proposed, which yields Pareto optimal solution in terms of minimization of the total 
number of buses and the deadhead distance. MILP solvers inherently possess certain capabilities, 
which include achieving optimal solution, ensuring solution convergence, and terminating 
automatically if they cannot satisfy the constraints [17]. In this study, the coin-or branch and cut 
solver, accessible via the PuLP library in Python is utilized to solve the MILP formulation. 

6.3.1 Objective functions 

To optimize the fleet usage while meeting the service demands, it is first aimed to minimize the 
number of electric buses deployed (see the second block in Fig. 53). The total number of buses in the 
system is determined by those dispatched from the depot, from which the buses are assumed to be 
exclusively launched (this does not restrict buses from shifting between lines). Therefore, the 
corresponding objective function counts all the trips 𝑗 of buses 𝑘 from the depot 𝐷0, and is formulated 
as: 

min∑∑𝑥𝐷0𝑗
𝑘

𝑗∈𝑁𝑘∈𝐾

, (6.1) 

The second objective relates to minimization of the total deadhead distance (see the third block in 
Fig. 53), which sums the distances the buses travel outside of regular service. More specifically, they 
include the distance for line switching between consecutive service trips 𝑖 and 𝑗 (𝑑𝑖𝑗), the distance to 

access a charger 𝑟 from an ith service trip endpoint (𝑑𝑖𝑟), and the distance from charger 𝑟 to the next 
service trip 𝑗 (𝑑𝑟𝑗) after charging is complete: 

min∑∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑘

𝑗∈𝐹(𝑖)𝑖∈𝑁𝑘∈𝐾

+∑∑ ∑ 𝑑𝑖𝑟𝑦𝑖𝑟𝑡
𝑘

𝑡∈𝐹𝑐(𝑟,𝑖)𝑖∈𝑁𝑘∈𝐾

+∑∑∑ ∑ 𝑑𝑟𝑗𝑧𝑟𝑡𝑗
𝑘

𝑗∈𝐹𝑖(𝑟,𝑡)𝑡∈𝑟𝑟∈𝑅𝑘∈𝐾

, (6.2) 

  



OLGA_D2.1_SoftwareSolution_ebusTransportElectrification_TransportSystemOptimization_v1.docx 

 

 

 

Confidential: This document is property of the OLGA Consortium and shall not be distributed or reproduced  
without the formal approval of the Consortium 

     107/118 
 

  

6.3.2 Vehicle scheduling constraints 

To ensure that each service trip is served only by one bus, the following constraint is set: 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝐵(𝑗)𝑘∈𝐾

+∑∑ ∑ 𝑧𝑟𝑡𝑗
𝑘

𝑡∈𝐵𝑐(𝑟,𝑗)𝑟∈𝑅𝑘∈𝐾

= 1; ∀𝑗 ∈ 𝑁. (6.3) 

Moreover, to guarantee a continuous flow of electric bus operations, a flow constraint is imposed for 
each service trip. This constraint mandates that after a bus completes a service trip or charging event, 
it needs to proceed to its next activity: 

∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝐵(𝑗)

+∑ ∑ 𝑧𝑟𝑡𝑗
𝑘

𝑡∈𝐵𝑐(𝑟,𝑗)𝑟∈𝑅

= ∑ 𝑥𝑗𝑙
𝑘

𝑙∈𝐹(𝑗)

+∑ ∑ 𝑦𝑗𝑟𝑡
𝑘

𝑡∈𝐹𝑐(𝑟,𝑗)𝑟∈𝑅

; ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾. (6.4) 

For each charging station, there is a need to ensure that the number of vehicles charging 
simultaneously does not exceed its charging spot capacity Nr: 

∑ ∑ 𝑦𝑗𝑟𝑡
𝑘

𝑗∈𝐵𝑖(𝑟,𝑡)𝑘∈𝐾

+∑𝑤𝑟𝑡−1
𝑘

𝑘∈𝐾

≤ 𝑁𝑟;  ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇
𝑟 . (6.5) 

Moreover, when a bus arrives to a charging station, it needs to depart from the charging station after 
completing its specified charging event: 

∑ 𝑦𝑖𝑟𝑡
𝑘

𝑖∈𝐵𝑖(𝑟,𝑡)

+ 𝑤𝑟𝑡−1
𝑘 = ∑ 𝑧𝑟𝑡𝑗

𝑘

𝑗∈𝐹𝑖(𝑟,𝑡)

+ 𝑤𝑟𝑡
𝑘 ;  ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾. (6.6) 

To ensure that the total number of deployed buses matches the given fleet size 𝑝 in the case of 
deadhead distance minimization step (Fig. 53), the following constraint is introduced: 

∑∑𝑥𝐷0𝑗
𝑘

𝑗∈𝑁𝑘∈𝐾

= 𝑝. (6.7) 

6.3.3 Energy consumption constraints 

First, every vehicle is set to begin the operating day with the battery charged at its upper limit: 

𝑒𝐷0
𝑘 = 𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 ;  ∀𝑘 ∈ 𝐾. (6.8) 

Furthermore, each bus must maintain its energy above the lower limit 𝑆𝑜𝐸𝑚𝑖𝑛
𝑘 , while considering its 

service trips, transfers, and routes to chargers whose SoE demands are specified by the constants 𝑐𝑖, 
𝑐𝑖𝑗, and 𝑐𝑖𝑟, respectively: 
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𝑒𝑖
𝑘 ≥ 𝑆𝑜𝐸𝑚𝑖𝑛

𝑘 + 𝑐𝑖 + ∑ 𝑥𝑖𝑗
𝑘 𝑐𝑖𝑗

𝑗∈𝐹(𝑖)

+∑ ∑ 𝑦𝑖𝑟𝑡
𝑘

𝑡∈𝐹𝑐(𝑟,𝑖)

𝑐𝑖𝑟
𝑟∈𝑅

; ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾. (6.9) 

The following two constraints provides energy conservation between consecutive service trips, 
where the first one ensures that the bus does not exceed its battery capacity, while the second one 
guarantees that it retains enough energy for subsequent service trip: 

𝑒𝑗
𝑘 ≤ 𝑒𝑖

𝑘 − 𝑥𝑖𝑗
𝑘 (𝑐𝑖 + 𝑐𝑖𝑗) + 𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 (1 − 𝑥𝑖𝑗
𝑘 ); ∀𝑗 ∈ 𝑁, ∀𝑖 ∈ 𝐵(𝑗), ∀𝑘 ∈ 𝐾, (6.10) 

𝑒𝑗
𝑘 ≥ 𝑒𝑖

𝑘 − 𝑥𝑖𝑗
𝑘 (𝑐𝑖 + 𝑐𝑖𝑗) − 𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 (1 − 𝑥𝑖𝑗
𝑘 ); ∀𝑗 ∈ 𝑁, ∀𝑖 ∈ 𝐵(𝑗), ∀𝑘 ∈ 𝐾. (6.11) 

The energy level of a bus, before embarking on a service trip, should reflect the balance of energy 
gained during its last charge and the energy consumed traveling from the last charging point to the 
next trip start: 

𝑒𝑗
𝑘 ≤ 𝜀𝑟𝑡

𝑘 + 𝑧𝑟𝑡𝑗
𝑘 ((𝑠𝑗 − 𝑡𝑟𝑗 − 𝑠𝑟𝑡)𝑞𝑟 − 𝑐𝑟𝑗) + 𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 (1 − 𝑧𝑟𝑡𝑗
𝑘 ); ∀𝑗 ∈ 𝑁, ∀𝑟 ∈ 𝑅, ∀t

∈ 𝐵𝑐(𝑟, 𝑗), ∀𝑘 ∈ 𝐾. 
(6.12) 

The following two constraints manage e-bus energy levels utilizing a large enough constant M for 
flexibility. The first constraint ensures that energy in a bus after charging remains within its maximum 
capacity when adjusted for the next trip (the 𝑀-term provides flexibility if the trip is not scheduled): 

𝑆𝑜𝐸𝑚𝑎𝑥
𝑘 ≥ 𝑒𝑗

𝑘 + 𝑐𝑟𝑗 −𝑀𝑞𝑟(1 − 𝑧𝑟𝑡𝑗
𝑘 ); ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐹𝑖(𝑟, 𝑡). (6.13) 

The second constraint oversees energy levels during charging to ensure that the post-charge energy 
does not exceed the maximum one, while considering the next charging event, (the 𝑀-term offers 
flexibility if the bus does not advance to its next charge): 

𝑆𝑜𝐸𝑚𝑎𝑥
𝑘 ≥ 𝜀𝑟𝑡+1

𝑘 −𝑀𝑞𝑟(1 − 𝑤𝑟𝑡
𝑘 ); ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾. (6.14) 

The following constraint ensures that a charged bus has adequate energy to travel from the charger 
to the next service trip: 

𝑒𝑗
𝑘 + 𝑐𝑟𝑗 +  𝑀𝑞𝑟(1 − 𝑧𝑟𝑡𝑗

𝑘 ) ≥ 𝑆𝑜𝐸𝑚𝑖𝑛
𝑘 + 𝑧𝑟𝑡𝑗

𝑘 𝑐𝑟𝑗;  ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇
𝑟 , ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐹𝑖(𝑟, 𝑡). (6.15) 

The following two equations are ensured by the preservation of energy between the service trip and 
the charger, where the next charging occurs: 

𝜀𝑟𝑡
𝑘 ≤ 𝑒𝑖

𝑘 − 𝑦𝑖𝑟𝑡
𝑘 (𝑐𝑖 + 𝑐𝑖𝑟) + 𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 (1 − 𝑦𝑖𝑟𝑡
𝑘 ); ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐵𝑖(𝑟, 𝑡). (6.16) 
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𝜀𝑟𝑡
𝑘 ≥ 𝑒𝑖

𝑘 − 𝑦𝑖𝑟𝑡
𝑘 (𝑐𝑖 + 𝑐𝑖𝑟) − 𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 (1 − 𝑦𝑖𝑟𝑡
𝑘 ); ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐵𝑖(𝑟, 𝑡). (6.17) 

Furthermore, the following constraint delineates the energy that can be charged during an event, 
accounting for the time gap between consecutive charging events: 

𝜀𝑟𝑡+1
𝑘 ≤ 𝜀𝑟𝑡

𝑘 + 𝑤𝑟𝑡
𝑘 (𝑠𝑟𝑡+1 − 𝑠𝑟𝑡)𝑞𝑟 + 𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 (1 − 𝑤𝑟𝑡
𝑘 ); ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾. (6.18) 

Specifically, if two successive charging events have the same start time (influenced by the start times 
and durations of service trips), no energy is charged between them. 

The constraint below sets a limit on the energy that can be charged during an event. It does so by 
considering the maximum energy that can be added before the next charging event starts on the same 
charger if the bus moves on to the next service trip after charging: 

𝑒𝑗
𝑘 + 𝑐𝑟𝑗 − 𝜀𝑟𝑡

𝑘 − 𝑆𝑜𝐸𝑚𝑎𝑥
𝑘 (1 − 𝑧𝑟𝑡𝑗

𝑘 ) ≤ (𝑠𝑟𝑡+1 − 𝑠𝑟𝑡)𝑞𝑟; ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇
𝑟 , ∀𝑘 ∈ 𝐾, ∀𝑗

∈ 𝐹𝑖(𝑟, 𝑡). 
(6.19) 

Furthermore, the constraints below ensure that the energy charged during a charging event remains 
non-negative. This is determined by the energy requirements on the subsequent trip or the next 
charging event. 

𝑒𝑗
𝑘 + 𝑐𝑟𝑗 − 𝜀𝑟𝑡

𝑘 + 𝑆𝑜𝐸𝑚𝑎𝑥
𝑘 (1 − 𝑧𝑟𝑡𝑗

𝑘 ) ≥ 0; ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐹𝑖(𝑟, 𝑡), (6.20) 

𝜀𝑟𝑡+1
𝑘 − 𝜀𝑟𝑡

𝑘 + 𝑆𝑜𝐸𝑚𝑎𝑥
𝑘 (1 − 𝑤𝑟𝑡

𝑘 ) ≥ 0; ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾. (6.21) 

Finally, it is necessary to ensure that buses are fully charged at the end of the operating day. First, it 
is stipulated that each bus needs to undergo charging before being parked at the depot for the start 
of the next operating day: 

∑∑ 𝑧𝑟𝑡𝐷𝑛
𝑘

𝑡∈𝑇𝑟𝑟∈𝑅

= 1; ∀𝑘 ∈ 𝐾. (6.22) 

Next, it is ensured that each bus is fully charged when completing the daily operation: 

𝜀𝑟𝑡
𝑘 + (𝑠𝑟𝑡+1

𝑘 − 𝑠𝑟𝑡
𝑘 )𝑞𝑟 ≥ 𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 −𝑀(1 − 𝑧𝑟𝑡𝐷𝑛
𝑘 ),  ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾 (6.23) 

Finally, the system ensures that the conclusion of the final charging event for each bus should occur 
early enough to allow the bus adequate time to be prepared for its initial trip on the subsequent day: 

𝑠𝑟𝑡+1
𝑘 ≤ 𝑠𝑗

𝑘 + 𝑡𝑟𝑗 + 1440 +𝑀(1 − 𝑧𝑟𝑡𝐷𝑛
𝑘 ),  ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟,∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾. (6.24) 
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where the constant 1440 represents a full day measured in minutes. 

6.3.4 Domain constraints 

The domain constraints specify the permissible values for the decision variables and the energy state 
variables: 

𝑥𝑖𝑗
𝑘 ∈ {0,1}; ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁 ∪ 𝐷0, ∀𝑗 ∈ 𝐹(𝑖) ∪ 𝐷𝑛, (6.25) 

𝑧𝑟𝑡𝑗
𝑘 ∈ {0,1}; ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑗 ∈ 𝐹𝑖(𝑟, 𝑡), (6.26) 

𝑦𝑖𝑟𝑡
𝑘 ∈ {0,1}; ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝐹𝑐(𝑟, 𝑖), (6.27) 

𝑤𝑟𝑡
𝑘 ∈ {0,1}; ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , (6.28) 

𝜀𝑟𝑡
𝑘 ≥ 0; ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , (6.29) 

𝑒𝑖
𝑘 ≥ 0; ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁. (6.30) 

6.4 Genetic algorithms approach 

Genetic algorithms (GA), inspired by biological evolution, offer a unique and general approach to 
optimization by simulating natural selection [18]. As such, they can handle complex and constraint-
heavy MILP formulations. When compared to MILP algorithms, the advantage of GAs is that they can 
handle large-scale problems (e.g. a large number of trips, charging stations, constraints), while the 
disadvantage is that they typically do not provide optimal solution (but rather converge in a nearly 
optimal solution, which is closer to the optimal solution if the number of iterations is set to be higher). 
Thus, in the context of e-bus scheduling optimization, the GA approach is employed as an alternative 
method for large-scale problems. 

The initial population of the GA has been formed by solving a relaxed MILP problem for 14 sub-
formulations. All 14 sub-formulations utilize either objective function (6.1) or (6.2), depending on the 
optimization phase (see Fig. 53), while adhering to the vehicle scheduling constraints (6.3)-(6.7) and 
the domain constraints (6.25)-(6.30). Between the remaining constraints (6.8)-(6.24), two randomly 
selected constraints are added to each sub-formulation. Furthermore, each of these constraints is 
present in at least one sub-formulation. This approach is aimed at fostering a swifter convergence of 
the GA. 
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Algorithm 4: Fitness function of genetic algorithm 

FUNCTION fitness_function(solution: Array) -> float: 

    # Decompose the solution into individual decision variables 

        x, y, z, w = reconstruct(solution) 

    # Translate the values into corresponding bus events 

        bus_events = generate_bus_events(x, y, z, w) 

    # Initialize violations counter 

        number_of_violations = 0 

    # Check for scheduling constraints 

        number_of_violations = CHECK_VEHICLE_SCHEDULING_CONSTRAINTS(bus_events) 

    # Initialize SoE penalty 

        soe_penalty = 0 

    # Compute energy details for each bus 

        FOR each_bus in bus_events: 

            # Initialize the State of Energy 

                soe = MAXIMUM_SOE   

            FOR event in each_bus: 

                # Update SoE based on the event 

                    soe = UPDATE_SOE(soe, event) 

                # Adjust soc_penalty if soc is negative 

                    IF soe < 0: 

                        soe_penalty += ABS(soe) 

            # Adjust soe_penalty if the final soc is not 100 

                IF soe != 100: 

                    soe_penalty += (100 - soe) 

    # Compute the fitness value 

        penalty = 1 / num_of_buses 

        P = penalty * (soe_penalty + number_of_violations) 

        fitness = 1 - (num_of_vehicles / num_of_buses) – P 

    RETURN fitness 

 
The GA employed the same solution representation as in the case of MILP formulation, where the 
binary decision variables 𝑥𝑖𝑗

𝑘 , 𝑧𝑟𝑡𝑗
𝑘 , 𝑦𝑖𝑟𝑡

𝑘 , and 𝑤𝑟𝑡𝑘  are optimized to obtain the final solution (see Fig 54). 

To ensure feasibility and optimality, the GA fitness function has been carefully designed (see 
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Algorithm 4). It assigns a lower value to solutions that use more vehicles and correspond to more 
constraint violations. 

The GA algorithm is set to run for 5,000 generations, and four mating parents were designated for 
each generation. The steady-state selection method is chosen for parent selection, promoting a 
gradual and consistent replacement of individuals in the population. A two-point crossover technique 
is employed, where two random crossover points are determined and genes between these points 
are swapped between two parent individuals. The mutation approach is of inversion type, where a 
selected gene segment is reversed to introduce diversity and 10% of genes are subjected to mutation. 
To maintain continuity, four parents from the current generation were retained for the subsequent 
one. The GA was implemented using Python PyGad library. 

6.5 Optimization results 

6.5.1 Scenario generation and data description 

A detailed system scenario has been developed to replicate the complexity of a city bus transport 
system [19]. For the purpose of verifying the MILP optimization algorithm (Subsection 6.5.2), a 
scenario involving 50 trips distributed across six distinct bus lines has been set up. Each line is 
delineated by two endpoints (start and final) selected from a pool of six possible end stations, resulting 
in some lines sharing the same end stations. Within this setup, three chargers are randomly placed 
among these six end stations. The electric buses are set to have a battery with the capacity of 100 
kWh, while the chargers provide power of 1.74 kWh/min, serving one bus at a time. The trips are 
scheduled to begin randomly throughout the day, with intervals of 10 to 30 minutes between 
consecutive trips. The trip duration ranges from 10 to 50 minutes, and the buses energy consumption 
rate randomly varies in the range from 0.8 to 1.2 kWh/min. The deadhead distance is set to randomly 
vary in the range from 10 to 50 km. 

The GA optimization algorithm has been verified and compared with the MILP algorithm (Subsection 
6.5.3) for a set of scenarios having the number of trips setting in the range from 5 to 500 and 
maintaining the remaining foundational input parameters. 

6.5.2 MILP optimization 

The MILP methodology depicted in Fig. 53 and elaborated in Subsection 6.3 has initially been applied 
to the case of conventional bus fleet. In this case, the problem formulation was reduced by removing 
the charging elements and constraints. More specifically, the scheduling of conventional buses was 
carried out by using the objective functions (6.1) and (6.2), and the constraints (6.3), (6.4), and (6.7), 
while solely the decision variable 𝑥𝑖𝑗

𝑘  was involved. Subsequently, the MILP optimization has been 
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conducted for the target case of e-bus fleet, where the full problem formulation of Subsection 6.3 is 
used. 

Fig. 55 shows the comparative Pareto frontiers obtained for the cases of conventional and electric 
city bus fleets, where the MILP algorithm is used along the basic scenario including 50 trips. Evidently, 
this system of relatively small size can be handled by only 5 conventional buses, in which case the 
deadhead distance equals almost 550 km (Fig. 55a) or around 20% of the total distance made when 
the number of buses is large enough to eliminate the deadhead distance (at least 32 buses; Fig. 55b). 
Due to the range and charging constraints, the e-bus fleet requires higher minimum number of buses 
compared to the conventional fleet (6 vs. 5, Fig. 55a) with the deadhead distance being reduced to 
some extent (from 20% to 17.5%, Fig. 55b), and the Pareto frontier generally shifts to higher values 
of the two objectives. However, as the number of electric buses increases (to 22), the Pareto frontier 
approaches that of the conventional fleet. This is because the charging system is efficient enough not 
to disturb the bus scheduling if the bus fleet is large enough. 

 

Fig. 55 Comparative Pareto frontiers obtained by MILP approach in the case of conventional and electric 
bus scheduling optimization 

6.5.3 Comparative analysis of MILP and GA optimization results 

A comparative analysis of the MILP and GA optimization results is presented in Fig. 56 for the case 
of minimizing only the total number of buses criterion (6.1). Both conventional and electric fleets are 
considered in the MILP case, while only the electric fleet is concerned in the GA case. For the sake of 
clear comparison of the two approaches, the computation time of MILP algorithm has been restricted 
to match that of the GA for the considered size of the transport system (i.e. the number of trips, the 
x-axis in Fig. 56). 

Fig. 56 indicates that the computational inefficiency of the MILP algorithm progressively grows with 
the rise of system size, i.e. number of trips (not that the execution time axis is logarithmic). Moreover, 
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as the system size expands, the MILP algorithm for electric fleet often fails to produce any feasible 
solution within the allotted time, as evidenced by the missing solutions for 100, 200, and 500 trips in 
Fig. 56. In contrast, the GA consistently yields feasible solutions for these larger trip numbers where 
MILP falls short. While the GA tends to provide sub-optimal results (e.g. for 50 trips, Fig. 56), it aligns 
with the MILP optimal solution for smaller-scale systems (same solution found for 10 and 25 trips) 
and consistently follows the solutions yielded by the MILP algorithm for the large-size conventional 
fleet. Hence, the GA is deemed to be a suitable choice for large-scale e-bus transport systems. 

 

Fig. 56 Comparison of minimal numbers of buses obtained by using MILP and GA approaches for various 
sizes of city bus transport system 

6.6 Short conclusion 

A multi-objective e-bus scheduling optimization approach has been proposed based on the Mixed 
Integer Linear Programming (MILP) problem formulation. The strategy seeks to minimize not only the 
e-bus fleet size, but also the deadhead distance, thus offering a spectrum of Pareto optimal solutions 
as a trade-off between investment and operating costs. The problem formulation accounts for charge 
sustaining condition, integrated charging at depot, and inherent variability of buses and charger 
parameters. 

Using a MILP solver offers the optimal solution, but its computational inefficiency restricts it to small-
size transport systems. The results indicate that, when compared to the conventional e-bus transport 
system, the e-bus system faces performance reductions due to vehicle range and charging 
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restrictions. This gap eventually narrows with increasing the fleet size, because the range and charging 
restrictions become less relevant for the expanded fleet size. 

To address scalability, the problem has also been solved by using a genetic algorithm (GA). The GA 
solution matches the MILP solution for small-scale systems, and at the same time offers feasible near-
optimal solutions for large-scale systems, thus proving its suitability for large e-bus fleets’ scheduling 
scenarios. 

7 Conclusion and outlook 

The previously developed SOLEZ project software application for city bus transport electrification 
planning has been modified and extended through this deliverable to expand its applicability 
(including airport landside and e-hub systems), provide automated optimization features, and increase 
its accuracy. The newly developed software solutions are organized around four characteristic 
modules: 

1) A trip-based data-driven e-bus model has been developed to substantially reduce the virtual 
transport system simulation execution time and the transport data demand. The former makes 
the mid/large-scale virtual simulation and optimization studies feasible, while the latter allows 
application to typical situations where only low-resolution recorded driving cycle data are 
available either through bus transport system tracking or planning. The data-driven e-bus 
model has been parameterized and tested for a wide range of driving cycles and scenarios, and 
it has been demonstrated that its accuracy approaches that of the experimentally validated 
physical e-bus model. 

2) A charging configuration optimization framework has been established and solved by a multi-
objective genetic algorithm (GA). The optimization results in a Pareto frontier in three 
objectives being minimized: the number of charging terminals, the total number of chargers, 
and the total (cumulative) trip service delay caused by e-bus range and charging constraints. 
This module provides an automated and optimal design of the charging system, thus minimizing 
the investment costs while penalizing for the service delay. The designer simply selects a 
convenient point from the Pareto optimal frontier based on his/her expert knowledge, rather 
than nominating multiple (and still limited) charging configurations and running virtual 
simulations in a manual way. 

3) A model predictive control (MPC) strategy for optimal online charging management has been 
developed along with an offline tool for globally optimal offline charging management 
optimization. A custom-made dynamic programming (DP) algorithm has been used in both 
tools to provide globally optimal solution for a general (nonlinear) problem formulation. The 
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main objective is to minimize the charging electricity cost, partly by boosting the share of 
electricity produced from local renewable sources. The MPC strategy is run on the simplified 
aggregate battery level to facilitate its application to large-scale systems such as e-hubs. The 
MPC-commanded aggregate charging power its then distributed to individual vehicles by using 
a heuristic algorithm based on charging priorities of individual vehicles. It has been 
demonstrated through a realistic case study that the hierarchical MPC strategy can approach 
the offline optimization benchmark to a narrow margin. The strategy can be used to make the 
e-hub planning studies more realistic, as well as in on-line charging management applications. 

4) An e-bus scheduling optimization algorithm has been designed based on the mixed integer 
linear problem (MILP) formulation and MILP and GA solver alternatives. The objectives are to 
minimize the e-bus fleet size (i.e., the total number of buses) and the service deadhead distance 
(i.e., the extra miles to switch between lines), while satisfying the predetermined e-bus lines, 
timetables, energy demand, and charging constraints. This results in a Pareto frontier in the 
two objectives, from which the designer can readily choose a point which satisfies the 
transport system practical constraints at best. The main benefit of the developed scheduling 
solution includes exploiting the e-bus re-scheduling opportunity in a strictly optimal way to 
mitigate the e-bus range- and charging-related restrictions and, thus, minimize the fleet 
investment cost, while leveraging the exploitation cost in terms of additional mileage and, 
correspondingly, energy consumption. 

In the remaining course of WP2.1 to be resulted in D2.2 by M54, the developed software solutions 
will be exploited to optimally design the airport-city (and intra-airport) e-bus transport system and 
the airport e-hub system based on real (recorded) transport and energy system data related to Zagreb 
airport and Paris-Charles de Gaulle airport. 
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